Patterns, Permutations, and Placements

Jonathan S. Bloom

Dartmouth College

Lafayette College - February 2014

Definition

A **permutation** of **length** n is a rearrangement of the numbers

$$1, 2, \ldots, n$$
.

Definition

A **permutation** of **length** n is a rearrangement of the numbers

$$1, 2, \ldots, n$$
.

Notation

 $ightharpoonup S_n =$ the set of all permutations of length n.

Definition

A **permutation** of **length** n is a rearrangement of the numbers

$$1, 2, \ldots, n$$
.

Notation

 $ightharpoonup S_n =$ the set of all permutations of length n.

$$S_3 = \{123, 132, 213, 231, 312, 321\},$$

Definition

A **permutation** of **length** n is a rearrangement of the numbers

$$1, 2, \ldots, n$$
.

Notation

 $ightharpoonup S_n =$ the set of all permutations of length n.

Example

$$S_3 = \{123, 132, 213, 231, 312, 321\},\$$

and

$$|S_n| =$$

Definition

A **permutation** of **length** n is a rearrangement of the numbers

$$1, 2, \ldots, n$$
.

Notation

 $ightharpoonup S_n =$ the set of all permutations of length n.

Example

$$S_3 = \{123, 132, 213, 231, 312, 321\},\$$

and

$$|S_n| = n!$$

D. Knuth (1968) defined a sorting algorithm called **stack sorting**.

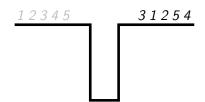
D. Knuth (1968) defined a sorting algorithm called **stack sorting**. Examples

Let $\alpha = 3 1 2 5 4$

D. Knuth (1968) defined a sorting algorithm called ${\it stack}$ ${\it sorting}$.

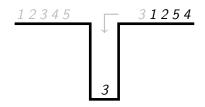
Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$



D. Knuth (1968) defined a sorting algorithm called **stack sorting**.

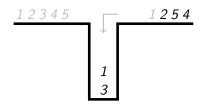
Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



D. Knuth (1968) defined a sorting algorithm called **stack sorting**.

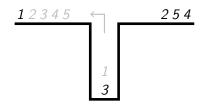
Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$



D. Knuth (1968) defined a sorting algorithm called stack sorting.

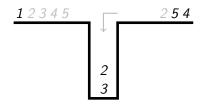
Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



D. Knuth (1968) defined a sorting algorithm called stack sorting.

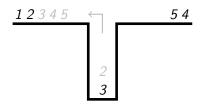
Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$



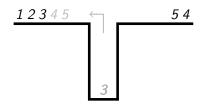
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



D. Knuth (1968) defined a sorting algorithm called stack sorting.

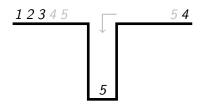
Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



D. Knuth (1968) defined a sorting algorithm called stack sorting.

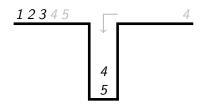
Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$



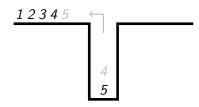
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



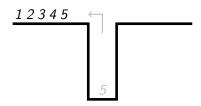
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



D. Knuth (1968) defined a sorting algorithm called stack sorting.

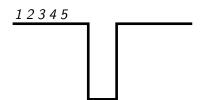
Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



D. Knuth (1968) defined a sorting algorithm called **stack sorting**.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

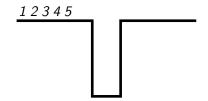
Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$

Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$

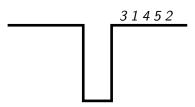
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



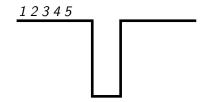
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



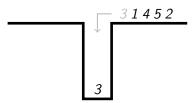
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



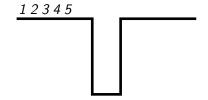
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



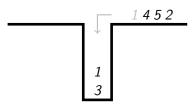
D. Knuth (1968) defined a sorting algorithm called **stack sorting**.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



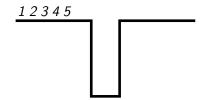
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



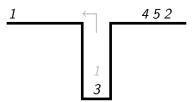
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



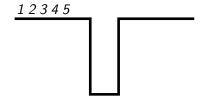
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



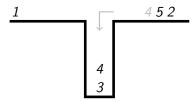
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



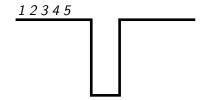
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



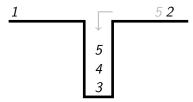
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



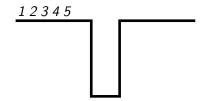
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



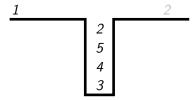
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



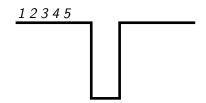
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



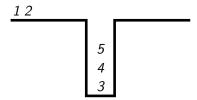
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



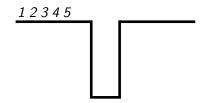
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



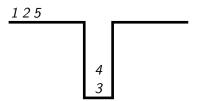
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



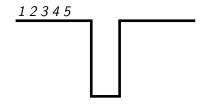
Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$



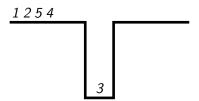
D. Knuth (1968) defined a sorting algorithm called stack sorting.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$



Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$

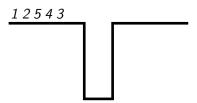


D. Knuth (1968) defined a sorting algorithm called **stack sorting**.

Examples

Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$

Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$

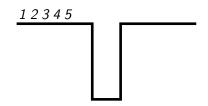


D. Knuth (1968) defined a sorting algorithm called **stack sorting**.

Examples

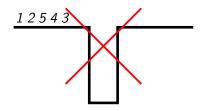
Let
$$\alpha = 3 \ 1 \ 2 \ 5 \ 4$$

 $ightharpoonup \alpha$ is stack-sortable



Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$

 $\blacktriangleright \pi$ is NOT stack-sortable



Question

Why is $\alpha = 3\ 1\ 2\ 5\ 4$ stack-sortable, while $\pi = 3\ 1\ 4\ 5\ 2$ is NOT?

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable iff

 π has three entries whose relative ordering is "231".

Question

Why is $\alpha = 3\ 1\ 2\ 5\ 4$ stack-sortable, while $\pi = 3\ 1\ 4\ 5\ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable iff

 π has three entries whose relative ordering is "231".

Examples

 $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT stack-sortable

Question

Why is $\alpha = 3\ 1\ 2\ 5\ 4$ stack-sortable, while $\pi = 3\ 1\ 4\ 5\ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable iff

 π has three entries whose relative ordering is "231".

Examples

 $\pi = 3 1 4 5 2$ is NOT stack-sortable

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable iff

 π has three entries whose relative ordering is "231".

Examples

 $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT stack-sortable $\Rightarrow \pi$ contains the pattern 231

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable iff

 π has three entries whose relative ordering is "231".

Examples

 $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT stack-sortable $\Rightarrow \pi$ contains the pattern 231 $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ is stack-sortable

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable iff

 π has three entries whose relative ordering is "231".

Examples

 $\pi=$ 3 1 4 5 2 is NOT stack-sortable $\Rightarrow \pi$ contains the pattern 231 $\alpha=$ 3 1 2 5 4 is stack-sortable $\Rightarrow \alpha$ avoids the pattern 231

It's easier with pictures!

$$\pi = 3 1 4 5 2$$

It's easier with pictures!

$$\pi = 3 \ 1 \ 4 \ 5 \ 2 \ \longmapsto$$

It's easier with pictures!

$$\pi = 3 \ 1 \ 4 \ 5 \ 2 \ \longmapsto$$

 \blacktriangleright π contains 132

It's easier with pictures!

$$\pi = 3 \ 1 \ 4 \ 5 \ 2 \ \longmapsto$$

 \blacktriangleright π contains 132

It's easier with pictures!

$$\pi = 3 \ 1 \ 4 \ 5 \ 2 \ \longmapsto$$

 \blacktriangleright π contains 132

It's easier with pictures!

$$\pi = 3 \ 1 \ 4 \ 5 \ 2 \ \longmapsto$$

- \blacktriangleright π contains 132
- \blacktriangleright π avoids 321

It's easier with pictures!

$$\pi = 3 \ 1 \ 4 \ 5 \ 2 \ \longmapsto$$

- \blacktriangleright π contains 132
- \blacktriangleright π avoids 321

Notation

▶ $S_n(\tau)$ = the set of permutations of length n that avoid τ .

It's easier with pictures!

$$\pi = 3 \ 1 \ 4 \ 5 \ 2 \ \longmapsto$$

- \blacktriangleright π contains 132
- \blacktriangleright π avoids 321

Notation

• $S_n(\tau) =$ the set of permutations of length n that avoid τ .

Definition

Two patterns σ and τ are **Wilf-equivalent** if for all n,

$$|S_n(\tau)| = |S_n(\sigma)|.$$

Example (Patterns of length 2)

```
Example (Patterns of length 2) In general, S_n(21) =
```

Example (Patterns of length 2)

In general,

$$S_n(21) = \{123 \dots n\}.$$

$$S_n(12) =$$

Example (Patterns of length 2)

In general,

$$S_n(21) = \{123 \dots n\}.$$

$$S_n(12) = \{n \dots 321\}.$$

Example (Patterns of length 2)

In general,

$$S_n(21) = \{123 \dots n\}.$$

$$S_n(12) = \{n \dots 321\}.$$

 \Rightarrow 12 is Wilf-equivalent to 21

Patterns of length 3 If τ is any pattern of length 3, then

Patterns of length 3 If τ is any pattern of length 3, then

$$|S_3(\tau)| = 5$$

 $|S_4(\tau)| = 14$
 $|S_5(\tau)| = 42$
 $|S_6(\tau)| = 132$
:

Patterns of length 3

If τ is any pattern of length 3, then

$$\begin{split} |S_3(\tau)| &= 5 \\ |S_4(\tau)| &= 14 \\ |S_5(\tau)| &= 42 \\ |S_6(\tau)| &= 132 \\ &\vdots \\ |S_n(\tau)| &= \frac{1}{n+1} \binom{2n}{n} = n \text{th Catalan number} \end{split}$$

Patterns of length 3

If τ is any pattern of length 3, then

$$\begin{split} |S_3(\tau)| &= 5 \\ |S_4(\tau)| &= 14 \\ |S_5(\tau)| &= 42 \\ |S_6(\tau)| &= 132 \\ &\vdots \\ |S_n(\tau)| &= \frac{1}{n+1} \binom{2n}{n} = n \text{th Catalan number} \end{split}$$

ALL length 3 patterns are Wilf-equivalent

Patterns of length 4

Patterns of length 4

n =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

Patterns of length 4

n =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

⇒ NOT all patterns of length 4 are Wilf-equivalent.

Patterns of length 4

n =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

⇒ NOT all patterns of length 4 are Wilf-equivalent.

What's Known?

Patterns of length 4

n =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

⇒ NOT all patterns of length 4 are Wilf-equivalent.

What's Known?

▶ Every pattern of length 4 is Wilf-equivalent to one of:

Patterns of length 4

n =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

⇒ NOT all patterns of length 4 are Wilf-equivalent.

What's Known?

Every pattern of length 4 is Wilf-equivalent to one of:

▶ I. Gessel (1990) gave a formula for $|S_n(1234)|$

Patterns of length 4

n =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

⇒ NOT all patterns of length 4 are Wilf-equivalent.

What's Known?

Every pattern of length 4 is Wilf-equivalent to one of:

- ▶ I. Gessel (1990) gave a formula for $|S_n(1234)|$
- ▶ M. Bóna (1997) gave a formula for $|S_n(2314)|$

Patterns of length 4

n =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

⇒ NOT all patterns of length 4 are Wilf-equivalent.

What's Known?

Every pattern of length 4 is Wilf-equivalent to one of:

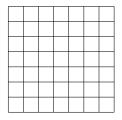
- ▶ I. Gessel (1990) gave a formula for $|S_n(1234)|$
- ▶ M. Bóna (1997) gave a formula for $|S_n(2314)|$

Open Problem

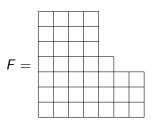
Find a formula for $|S_n(1324)|$.

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

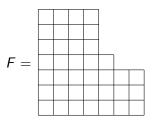
A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.



A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

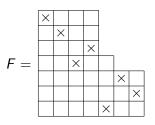


A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.



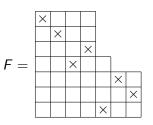
A **full rook placement** (f.r.p.) on F is a placement of markers with **EXACTLY** one in each row and column.

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.



A **full rook placement** (f.r.p.) on F is a placement of markers with **EXACTLY** one in each row and column.

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

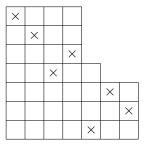


A **full rook placement** (f.r.p.) on F is a placement of markers with **EXACTLY** one in each row and column.

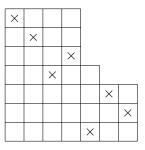
Notation

 $ightharpoonup \mathcal{R}_F = set \ of \ all \ f.r.p.$'s on the Ferrers board F

Patterns?

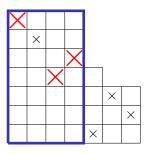


Patterns?



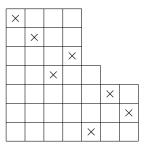
contains the pattern 312

Patterns?



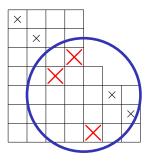
contains the pattern 312

Patterns?



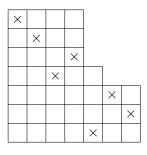
- **contains** the pattern 312
- ▶ avoids the pattern 231

Patterns?



- **contains** the pattern 312
- ▶ avoids the pattern 231

Patterns?



- **contains** the pattern 312
- ▶ avoids the pattern 231

Notation

• $\mathcal{R}_F(\tau) = \text{set of all f.r.p. on } F \text{ that avoid } \tau.$

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

Observe

 $shape-Wilf-equivalence \Rightarrow Wilf-equivalence.$

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

Observe

shape-Wilf-equivalence \Rightarrow Wilf-equivalence.

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

Observe

shape-Wilf-equivalence ⇒ Wilf-equivalence.

What's Known?

▶ 123 . . . $k \sim k$. . . 321 (J. Backlin, J. West, and G. Xin, 2000)

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

Observe

shape-Wilf-equivalence \Rightarrow Wilf-equivalence.

- ▶ 123... $k \sim k$...321 (J. Backlin, J. West, and G. Xin, 2000)
- ightharpoonup 231 \sim 312 (Z. Stankova and J. West, 2002)

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

Observe

shape-Wilf-equivalence \Rightarrow Wilf-equivalence.

- ▶ 123... $k \sim k$...321 (J. Backlin, J. West, and G. Xin, 2000)
- ightharpoonup 231 \sim 312 (Z. Stankova and J. West, 2002)
 - Complicated proof

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

Observe

shape-Wilf-equivalence \Rightarrow Wilf-equivalence.

- ▶ 123... $k \sim k$...321 (J. Backlin, J. West, and G. Xin, 2000)
- ightharpoonup 231 \sim 312 (Z. Stankova and J. West, 2002)
 - Complicated proof ⇒ can't count things

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

Observe

shape-Wilf-equivalence \Rightarrow Wilf-equivalence.

- ▶ 123 . . . $k \sim k$. . . 321 (J. Backlin, J. West, and G. Xin, 2000)
- ightharpoonup 231 \sim 312 (Z. Stankova and J. West, 2002)
 - Complicated proof ⇒ can't count things
- \blacktriangleright We give a simple proof that 231 \sim 312

Definition

Two patterns σ and τ are **shape-Wilf-equivalent** if for **every** F,

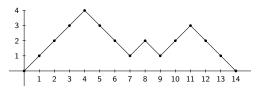
$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

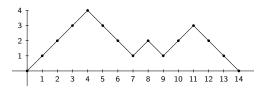
Observe

shape-Wilf-equivalence \Rightarrow Wilf-equivalence.

- ▶ 123 . . . $k \sim k$. . . 321 (J. Backlin, J. West, and G. Xin, 2000)
- ightharpoonup 231 \sim 312 (Z. Stankova and J. West, 2002)
 - Complicated proof ⇒ can't count things
- \blacktriangleright We give a simple proof that 231 \sim 312
 - Can count things!



A **Dyck path** of size n is a path that:



A **Dyck path** of size n is a path that:

starts at the origin

A **Dyck path** of size *n* is a path that:

- starts at the origin
- ends at the point (2n, 0)

A **Dyck path** of size *n* is a path that:

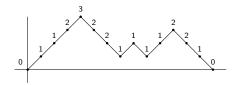
- starts at the origin
- ends at the point (2n,0)
- never goes below the x-axis

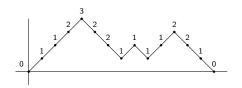
A **Dyck path** of size *n* is a path that:

- starts at the origin
- ends at the point (2n,0)
- never goes below the x-axis

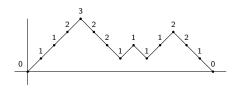
It is well known that

Dyck paths of size
$$n = \frac{1}{n+1} \binom{2n}{n}$$

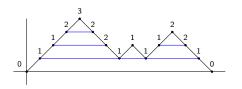




- Monotonicity
 - +1/0 up step and -1/0 down step



- Monotonicity
 - +1/0 up step and -1/0 down step
- Zero Condition
 - All zeros lie precisely on the x-axis



- Monotonicity
 - +1/0 up step and -1/0 down step
- Zero Condition
 - All zeros lie precisely on the x-axis
- Tunnel Property
 - "Left" ≤ "Right"

Our proof of 231 \sim 312 $\,$

An outline

An outline

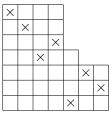
1. 231-avoiding rook placement \mapsto Tunnel property

An outline

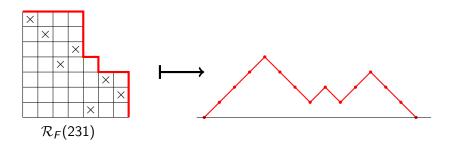
- 1. 231-avoiding rook placement → Tunnel property
- 2. Tunnel Property → Reverse Tunnel Property

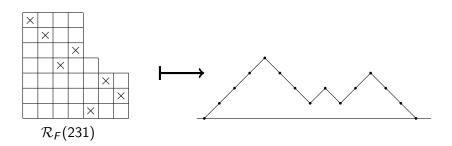
An outline

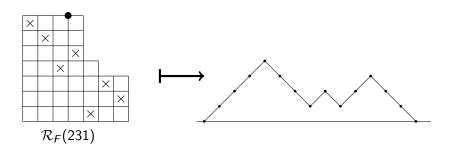
- 1. 231-avoiding rook placement \mapsto Tunnel property
- 2. Tunnel Property → Reverse Tunnel Property
- 3. Reverse Tunnel Property \mapsto 312-avoiding rook placement

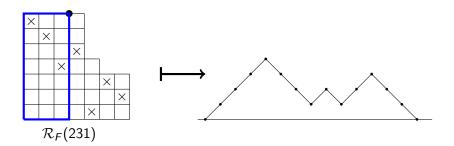


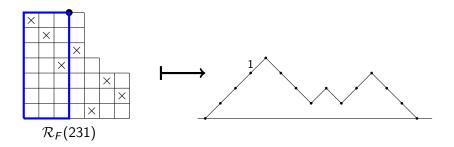
 $\mathcal{R}_F(231)$

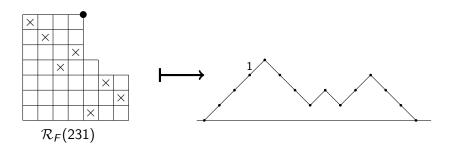


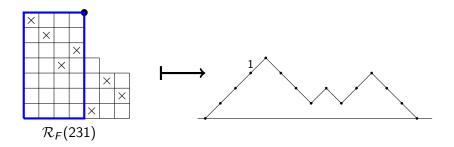


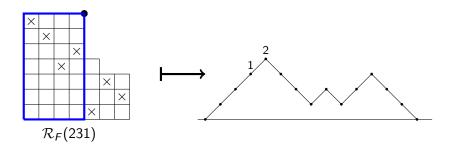


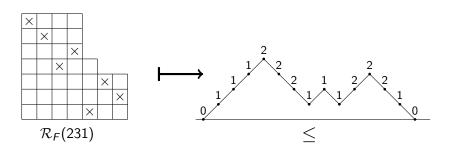


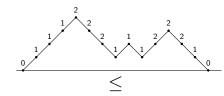


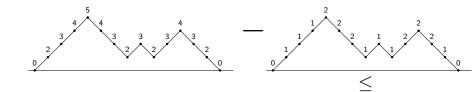


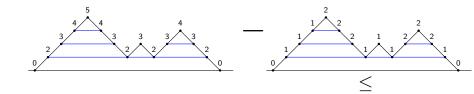


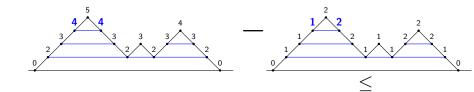


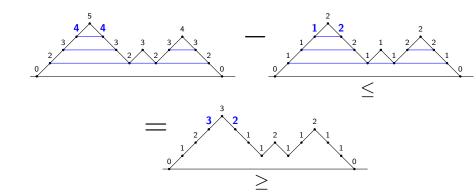




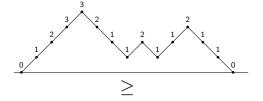




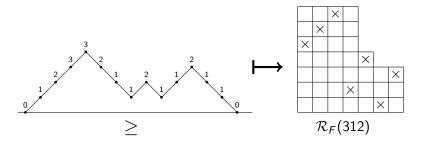




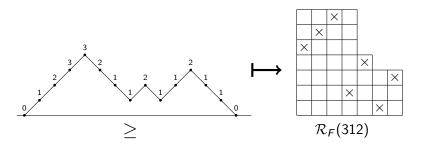
3. Reverse tunnel property \mapsto 312-avoiding f.r.p.



3. Reverse tunnel property \mapsto 312-avoiding f.r.p.



3. Reverse tunnel property \mapsto 312-avoiding f.r.p.



Theorem (Bloom-Saracino '11)

This mapping is a bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$.

⇒ 231 and 312 are shape-Wilf-equivalent.

In 1997, Bóna proved the celebrated result:

$$|S_n(2314)| = (-1)^n \left[\frac{-7n^2 + 3n + 2}{2} + 6 \sum_{i=2}^n (-2)^i \frac{(2i-4)!}{i!(i-2)!} \binom{n-i+2}{2} \right]$$

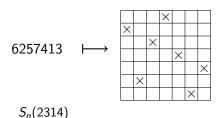
In 1997, Bóna proved the celebrated result:

$$|S_n(2314)| = (-1)^n \left[\frac{-7n^2 + 3n + 2}{2} + 6 \sum_{i=2}^n (-2)^i \frac{(2i-4)!}{i!(i-2)!} \binom{n-i+2}{2} \right]$$

$$S_n(2314)$$

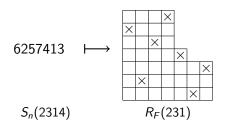
In 1997, Bóna proved the celebrated result:

$$|S_n(2314)| = (-1)^n \left[\frac{-7n^2 + 3n + 2}{2} + 6 \sum_{i=2}^n (-2)^i \frac{(2i-4)!}{i!(i-2)!} \binom{n-i+2}{2} \right]$$



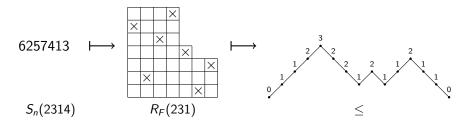
In 1997, Bóna proved the celebrated result:

$$|S_n(2314)| = (-1)^n \left[\frac{-7n^2 + 3n + 2}{2} + 6 \sum_{i=2}^n (-2)^i \frac{(2i-4)!}{i!(i-2)!} \binom{n-i+2}{2} \right]$$



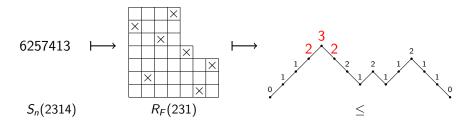
In 1997, Bóna proved the celebrated result:

$$|S_n(2314)| = (-1)^n \left[\frac{-7n^2 + 3n + 2}{2} + 6 \sum_{i=2}^n (-2)^i \frac{(2i-4)!}{i!(i-2)!} \binom{n-i+2}{2} \right]$$



In 1997, Bóna proved the celebrated result:

$$|S_n(2314)| = (-1)^n \left[\frac{-7n^2 + 3n + 2}{2} + 6 \sum_{i=2}^n (-2)^i \frac{(2i-4)!}{i!(i-2)!} \binom{n-i+2}{2} \right]$$



Thank you!

Appendix: New Enumerative Results

▶ In 2012, D. Callan and V. Kotesovec conjectured that

$$\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = \frac{1}{1 - C(zC(z))}$$
$$= 1 + z + 2z + 6z^2 + 22z^3 + \cdots$$

where C(z) is the generating function for the Catalan numbers.

Appendix: New Enumerative Results

▶ In 2012, D. Callan and V. Kotesovec conjectured that

$$\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = \frac{1}{1 - C(zC(z))}$$
$$= 1 + z + 2z + 6z^2 + 22z^3 + \cdots$$

where C(z) is the generating function for the Catalan numbers.

All 231-avoiding f.r.p. are counted by

$$\frac{54z}{1+36z-(1-12z)^{3/2}}=1+z+3z^2+14z^3+83z^4+\cdots$$

Appendix: New Enumerative Results

▶ In 2012, D. Callan and V. Kotesovec conjectured that

$$\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = \frac{1}{1 - C(zC(z))}$$
$$= 1 + z + 2z + 6z^2 + 22z^3 + \cdots$$

where C(z) is the generating function for the Catalan numbers.

All 231-avoiding f.r.p. are counted by

$$\frac{54z}{1+36z-(1-12z)^{3/2}}=1+z+3z^2+14z^3+83z^4+\cdots$$

▶ New enumerative results in the theory of perfect matchings and set partitions.