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We say two patterns o and 7 are Wilf-equivalent provided
| Ava(0)] = | Ava(7)|
for all n. In this case we write o ~ 7.

Recall, for patterns of length 4 we have

Class|n 5 6 7 8 9

1423 ~ 2413 | 103 512 2740 15485 91245
1234 103 513 2761 15767 94359
1324 103 513 2762 15793 94776

» There are exactly 3 Wilf-classes in S,.
» Stankova (1994) proved that 1423 ~ 2413.
» Proof idea: Isomorphic generating trees
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Recall
The Major index is

Maj(m) = Z i

i€Des()

An example

X Des = {2,4,6}
x|\ Maj = 12

/
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We say two patterns o, 7 are Maj-Wilf-equivalent and write
O ~Maj T

provided there is a bijection © from Av,(c) to Av,(7) that
preserves the Major index, i.e.,

Maj = Maj 00,

or, in generating function terms

|| (Maj(m) _ |7| $Maj(m)
Z X't Z X't .

mEAV(o) wEAV(T)

Conjecture (Dokos, et al., 2012)
The patterns 1423 and 2413 are Maj-Wilf-equivalent.
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1423 ~ 2413 revisited

Theorem (Bloom, 2014)
There is an explicit bijection

© : Av,(1423) — Av,(2413)

such that © preserves descents (hence Major index), right-to-left
maxima, -bonds, position of n and n — 1. Additionally, if

™ € Avn(1423) N Av,(2413)
then ©(7) = .

Note
» © is not the same as Stankova's “implied” bijection.

» Stankova's isomorphism does not preserve these statistics.
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» By induction we can compute

A = o(x (M)

» Lastly, ©(r) = A[A?].

A% = 0(x®).
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Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix € {246135, 263514, 254613, 524361, 546132}. Then

3—x—+vV1—6x+x2
2 b

D | Ava(2143,3142, 7)|x" =

n>0

> Av,(2143,3142,7) is counted by the large Schréder numbers.

Proved...
» Burstein and Pantone proved 7 = 246135
» simple permutations
» Bloom and Burstein proved the remaining 4 cases

» 263514: simple permutations
» 254613, 524361, 546132: decomposition using LR-maxima
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Unbalanced Wilf-equivalence

Just an example
As separable permutations Av(2413,3142) are counted by large
Schréder numbers, so

| Av,(2413,3142)| = | Av,(2143,3142, 7)),
where T € {246135, 263514, 254613, 524361, 546132}
More generally
Let X and Y be two sets of patterns with | X| # |Y]. If
| Av,(X)| = | Avp(Y)] (for all n),

then, we say X and Y are an unbalanced Wilf-equivalence.

» Examples of unbalanced Wilf-equivalence abound!
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Set
A(X, t) _ Z X|7r\t# lead(Tr)’
TEAV(2143,3142,254613)

and B(x) = A(x, 1).

If 7 € Av,(2143,3142,254613), has exactly 1 horizontal gap, then

—
X

This translates to

txE B—tA 1
T x where E(x,t) = T 1-n
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If 7 has at least 2 horizontal gaps, then
rightmost horizontal gap

—=

[ ] of

/ » Add horizontal gap
D » Add block into gap
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Putting this together yields the functional equation

1 txE
A(X’t)zl—tx—i_l—x
1 x(B—-1) 1
A_
+( 1—tX><(1—X)(l—tx)><1_txl(€t_1)>a
where
E(x,t) = E-A ! and B =A(x,1).
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Counting Av,(2143, 3142, 254613)

With a bit of algebra (thanks to Mathematica)

Bt3x?2 + Bt?x? — Bt’x — Btx? + Bx — t’x +t — 1 A
(1—t)(1 - x)(1 — Btx) .

. xt Btx —B+1

C1—x \(t—1)(tx—1)
1

1—xt

where A, = A —
Setting the kernel to zero
0 = Bt3x? 4+ Bt’x®> — Bt’x — Btx®> + Bx — t’x + t — 1.

» Directly solving fails
» Let t = t(x) be the desired solution
» The RHS yields: Bxt(x) =B —1
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Using the fact that Bxt(x) = B — 1, the kernel becomes

B3x+B?x?—3B?x—B?4Bx+3B—2 = (xB—1)(B?+(x—3)B+2).

Solving (now) yields

3—x—+vV1—6x+x2
2
=14 x+2x°>+6x3+22x* +90x> + - -

A(x,1) =B =



Thank Youl



