Another (more refined) look at the Wilf-equivlance of certain length 4 pattern

Jonathan S. Bloom
Rutgers University

Joint Math Meetings - San Antonio 2015

Overview

Part I

Overview

Part I

- Another look at Stankova's result that

$$
\left|A v_{n}(1423)\right|=\left|A v_{n}(2413)\right|
$$

Overview

Part I

- Another look at Stankova's result that

$$
\left|A v_{n}(1423)\right|=\left|A v_{n}(2413)\right|
$$

- A new statistic preserving bijection

Overview

Part I

- Another look at Stankova's result that

$$
\left|A v_{n}(1423)\right|=\left|A v_{n}(2413)\right|
$$

- A new statistic preserving bijection

Part II

- Unbalanced-Wilf-equivalence and the Egge triples

$1423 \sim 2413$ revisited

We say two patterns σ and τ are Wilf-equivalent provided

$$
\left|A v_{n}(\sigma)\right|=\left|A v_{n}(\tau)\right|
$$

for all n.

$1423 \sim 2413$ revisited

We say two patterns σ and τ are Wilf-equivalent provided

$$
\left|A v_{n}(\sigma)\right|=\left|A v_{n}(\tau)\right|
$$

for all n. In this case we write $\sigma \sim \tau$.

$1423 \sim 2413$ revisited

We say two patterns σ and τ are Wilf-equivalent provided

$$
\left|\mathrm{Av}_{n}(\sigma)\right|=\left|\mathrm{Av}_{n}(\tau)\right|
$$

for all n. In this case we write $\sigma \sim \tau$.
Recall, for patterns of length 4 we have

Class $\mid n$	5	6	7	8	9	\ldots
$1423 \sim 2413$	103	512	2740	15485	91245	\ldots
1234	103	513	2761	15767	94359	\ldots
1324	103	513	2762	15793	94776	\ldots

$1423 \sim 2413$ revisited

We say two patterns σ and τ are Wilf-equivalent provided

$$
\left|A v_{n}(\sigma)\right|=\left|A v_{n}(\tau)\right|
$$

for all n. In this case we write $\sigma \sim \tau$.
Recall, for patterns of length 4 we have

Class $\mid n$	5	6	7	8	9	\ldots
$1423 \sim 2413$	103	512	2740	15485	91245	\ldots
1234	103	513	2761	15767	94359	\ldots
1324	103	513	2762	15793	94776	\ldots

- There are exactly 3 Wilf-classes in S_{4}.

$1423 \sim 2413$ revisited

We say two patterns σ and τ are Wilf-equivalent provided

$$
\left|A v_{n}(\sigma)\right|=\left|A v_{n}(\tau)\right|
$$

for all n. In this case we write $\sigma \sim \tau$.
Recall, for patterns of length 4 we have

Class $\mid n$	5	6	7	8	9	\ldots
$1423 \sim 2413$	103	512	2740	15485	91245	\ldots
1234	103	513	2761	15767	94359	\ldots
1324	103	513	2762	15793	94776	\ldots

- There are exactly 3 Wilf-classes in S_{4}.
- Stankova (1994) proved that $1423 \sim 2413$.

$1423 \sim 2413$ revisited

We say two patterns σ and τ are Wilf-equivalent provided

$$
\left|A v_{n}(\sigma)\right|=\left|A v_{n}(\tau)\right|
$$

for all n. In this case we write $\sigma \sim \tau$.
Recall, for patterns of length 4 we have

Class $\mid n$	5	6	7	8	9	\ldots
$1423 \sim 2413$	103	512	2740	15485	91245	\ldots
1234	103	513	2761	15767	94359	\ldots
1324	103	513	2762	15793	94776	\ldots

- There are exactly 3 Wilf-classes in S_{4}.
- Stankova (1994) proved that $1423 \sim 2413$.
- Proof idea: Isomorphic generating trees

$1423 \sim 2413$ revisited

Recall

$1423 \sim 2413$ revisited

Recall

The Major index is

$$
\operatorname{Maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i
$$

$1423 \sim 2413$ revisited

Recall
The Major index is

$$
\operatorname{Maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i .
$$

An example

$1423 \sim 2413$ revisited

Recall
The Major index is

$$
\operatorname{Maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i .
$$

An example

$1423 \sim 2413$ revisited

Recall
The Major index is

$$
\operatorname{Maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i .
$$

An example

$1423 \sim 2413$ revisited

Recall

The Major index is

$$
\operatorname{Maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i .
$$

An example

Des $=\{2,4,6\}$

$1423 \sim 2413$ revisited

Recall

The Major index is

$$
\operatorname{Maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i .
$$

An example

Des $=\{2,4,6\}$
$\mathrm{Maj}=12$

$1423 \sim 2413$ revisited

We say two patterns σ, τ are Maj-Wilf-equivalent and write

$$
\sigma \sim_{M a j} \tau
$$

provided there is a bijection Θ from $\operatorname{Av}_{n}(\sigma)$ to $A v_{n}(\tau)$ that preserves the Major index,

$1423 \sim 2413$ revisited

We say two patterns σ, τ are Maj-Wilf-equivalent and write

$$
\sigma \sim_{M a j} \tau
$$

provided there is a bijection Θ from $\operatorname{Av}_{n}(\sigma)$ to $A v_{n}(\tau)$ that preserves the Major index, i.e.,

$$
\mathrm{Maj}=\mathrm{Maj} \circ \Theta,
$$

$1423 \sim 2413$ revisited

We say two patterns σ, τ are Maj-Wilf-equivalent and write

$$
\sigma \sim_{M a j} \tau
$$

provided there is a bijection Θ from $\operatorname{Av}_{n}(\sigma)$ to $A v_{n}(\tau)$ that preserves the Major index, i.e.,

$$
\mathrm{Maj}=\mathrm{Maj} \circ \Theta,
$$

or, in generating function terms

$$
\sum_{\pi \in \operatorname{Av}(\sigma)} x^{|\pi|} t^{\operatorname{Maj}(\pi)}=\sum_{\pi \in \operatorname{Av}(\tau)} x^{|\pi|} t^{\operatorname{Maj}(\pi)}
$$

$1423 \sim 2413$ revisited

We say two patterns σ, τ are Maj-Wilf-equivalent and write

$$
\sigma \sim_{M a j} \tau
$$

provided there is a bijection Θ from $\operatorname{Av}_{n}(\sigma)$ to $A v_{n}(\tau)$ that preserves the Major index, i.e.,

$$
\mathrm{Maj}=\mathrm{Maj} \circ \Theta,
$$

or, in generating function terms

$$
\sum_{\pi \in \operatorname{Av}(\sigma)} x^{|\pi|} t^{\operatorname{Maj}(\pi)}=\sum_{\pi \in \operatorname{Av}(\tau)} x^{|\pi|} t^{\operatorname{Maj}(\pi)}
$$

Conjecture (Dokos, et al., 2012)
The patterns 1423 and 2413 are Maj-Wilf-equivalent.

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves descents (hence Major index),

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves descents (hence Major index), right-to-left maxima,

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves descents (hence Major index), right-to-left maxima, -bonds,

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves descents (hence Major index), right-to-left maxima, -bonds, position of n and $n-1$.

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves descents (hence Major index), right-to-left maxima, -bonds, position of n and $n-1$. Additionally, if

$$
\pi \in \mathrm{Av}_{n}(1423) \cap A \mathrm{v}_{n}(2413)
$$

then $\Theta(\pi)=\pi$.

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves descents (hence Major index), right-to-left maxima, -bonds, position of n and $n-1$. Additionally, if

$$
\pi \in A \mathrm{v}_{n}(1423) \cap A \mathrm{v}_{n}(2413)
$$

then $\Theta(\pi)=\pi$.
Note

- Θ is not the same as Stankova's "implied" bijection.

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves descents (hence Major index), right-to-left maxima, -bonds, position of n and $n-1$. Additionally, if

$$
\pi \in A \mathrm{v}_{n}(1423) \cap A \mathrm{v}_{n}(2413)
$$

then $\Theta(\pi)=\pi$.
Note

- Θ is not the same as Stankova's "implied" bijection.
- Stankova's isomorphism does not preserve these statistics.

Anatomy of a 1423

Anatomy of a 2413

\times
\times

Anatomy of a 2413

Rough idea behind Θ

Given an arbitrary $\pi \in A v_{n}$ (1423):

$\pi \in \mathrm{Av}_{n}(1423)$

Rough idea behind Θ

Given an arbitrary $\pi \in A v_{n}$ (1423):

$\pi \in \mathrm{Av}_{n}(1423)$

Rough idea behind Θ

Given an arbitrary $\pi \in A v_{n}$ (1423):

$\pi \in \mathrm{Av}_{n}(1423)$

Rough idea behind Θ

Given an arbitrary $\pi \in A v_{n}$ (1423):

$\pi \in A \mathrm{v}_{n}(1423)$

Rough idea behind Θ

Given an arbitrary $\pi \in A v_{n}$ (1423):

$\pi \in \mathrm{Av}_{n}(1423)$

$\Theta(\pi)$

Given $\pi \in \mathrm{Av}_{n}$ (1423) we decompose it as follows:

Given $\pi \in \mathrm{Av}_{n}$ (1423) we decompose it as follows:

Given $\pi \in \mathrm{Av}_{n}(1423)$ we decompose it as follows:

- By induction we can compute

$$
\Lambda^{1}=\Theta\left(\pi^{(1)}\right) \quad \Lambda^{2}=\Theta\left(\pi^{(2)}\right) .
$$

- By induction we can compute

$$
\Lambda^{1}=\Theta\left(\pi^{(1)}\right) \quad \Lambda^{2}=\Theta\left(\pi^{(2)}\right) .
$$

Λ^{2}
Λ^{1}

- By induction we can compute

$$
\Lambda^{1}=\Theta\left(\pi^{(1)}\right) \quad \Lambda^{2}=\Theta\left(\pi^{(2)}\right) .
$$

Λ^{2}
Λ^{1}

- By induction we can compute

$$
\Lambda^{1}=\Theta\left(\pi^{(1)}\right) \quad \Lambda^{2}=\Theta\left(\pi^{(2)}\right) .
$$

Λ^{1}

- Lastly, $\Theta(\pi)=\Lambda^{1}\left[\Lambda^{2}\right]$.

Part II

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,263514,254613,524361,546132\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2},
$$

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,263514,254613,524361,546132\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers.

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,263514,254613,524361,546132\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers.

Proved...

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,263514,254613,524361,546132\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers.

Proved...

- Burstein and Pantone proved $\tau=246135$

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,263514,254613,524361,546132\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers.

Proved...

- Burstein and Pantone proved $\tau=246135$
- simple permutations

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,263514,254613,524361,546132\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers.

Proved...

- Burstein and Pantone proved $\tau=246135$
- simple permutations
- Bloom and Burstein proved the remaining 4 cases

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,263514,254613,524361,546132\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers.

Proved...

- Burstein and Pantone proved $\tau=246135$
- simple permutations
- Bloom and Burstein proved the remaining 4 cases
- 263514: simple permutations

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,263514,254613,524361,546132\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers.

Proved...

- Burstein and Pantone proved $\tau=246135$
- simple permutations
- Bloom and Burstein proved the remaining 4 cases
- 263514: simple permutations
- 254613, 524361, 546132: decomposition using LR-maxima

Unbalanced Wilf-equivalence

Just an example

As separable permutations $\operatorname{Av}(2413,3142)$ are counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.

Unbalanced Wilf-equivalence

Just an example

As separable permutations $\operatorname{Av}(2413,3142)$ are counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|,
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.

More generally

Unbalanced Wilf-equivalence

Just an example
As separable permutations $\operatorname{Av}(2413,3142)$ are counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.

More generally
Let X and Y be two sets of patterns with $|X| \neq|Y|$.

Unbalanced Wilf-equivalence

Just an example

As separable permutations $\operatorname{Av}(2413,3142)$ are counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|,
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.

More generally
Let X and Y be two sets of patterns with $|X| \neq|Y|$. If

$$
\left|A v_{n}(X)\right|=\left|A v_{n}(Y)\right| \quad(\text { for all } n)
$$

then, we say X and Y are an unbalanced Wilf-equivalence.

Unbalanced Wilf-equivalence

Just an example

As separable permutations $\operatorname{Av}(2413,3142)$ are counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.

More generally
Let X and Y be two sets of patterns with $|X| \neq|Y|$. If

$$
\left|A v_{n}(X)\right|=\left|A v_{n}(Y)\right| \quad(\text { for all } n)
$$

then, we say X and Y are an unbalanced Wilf-equivalence.

- Examples of unbalanced Wilf-equivalence abound!

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

If $\pi \in \operatorname{Av}_{n}(2143,3142)$, then it looks like:

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

If $\pi \in \operatorname{Av}_{n}(2143,3142)$, then it looks like:

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

If $\pi \in \operatorname{Av}_{n}(2143,3142)$, then it looks like:

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

If $\pi \in \operatorname{Av}_{n}(2143,3142)$, then it looks like:
horizontal gap

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

Set

$$
A(x, t)=\sum_{\pi \in \operatorname{Av}(2143,3142,254613)} x^{|\pi|} t^{\# \operatorname{lead}(\pi)}
$$

and $B(x)=A(x, 1)$.

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

Set

$$
A(x, t)=\sum_{\pi \in \operatorname{Av}(2143,3142,254613)} x^{|\pi|} t^{\# \operatorname{lead}(\pi)}
$$

and $B(x)=A(x, 1)$.
If $\pi \in A v_{n}(2143,3142,254613)$, has exactly 1 horizontal gap, then

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

Set

$$
A(x, t)=\sum_{\pi \in \operatorname{Av}(2143,3142,254613)} x^{|\pi|} t^{\# \operatorname{lead}(\pi)}
$$

and $B(x)=A(x, 1)$.
If $\pi \in A v_{n}(2143,3142,254613)$, has exactly 1 horizontal gap, then

This translates to

$$
\frac{t x E}{1-x} \quad \text { where } \quad E(x, t)=\frac{B-t A}{1-t}-\frac{1}{1-t x}
$$

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

If π has at least 2 horizontal gaps, then
rightmost horizontal gap

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

If π has at least 2 horizontal gaps, then
rightmost horizontal gap

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

If π has at least 2 horizontal gaps, then
rightmost horizontal gap

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

Putting this together yields the functional equation

$$
\begin{aligned}
A(x, t) & =\frac{1}{1-t x}+\frac{t x E}{1-x} \\
& +\left(A-\frac{1}{1-t x}\right)\left(\frac{x(B-1)}{(1-x)(1-t x)}\right)\left(\frac{1}{1-\frac{t x(B-1)}{1-t x}}\right)
\end{aligned}
$$

where

$$
E(x, t)=\frac{B-t A}{1-t}-\frac{1}{1-t x} \quad \text { and } \quad B=A(x, 1)
$$

Counting $A v_{n}(2143,3142,254613)$

With a bit of algebra (thanks to Mathematica)

Counting $A v_{n}(2143,3142,254613)$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.

Counting $A v_{n}(2143,3142,254613)$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.
Setting the kernel to zero

$$
0=B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1
$$

Counting $A v_{n}(2143,3142,254613)$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.
Setting the kernel to zero

$$
0=B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1
$$

- Directly solving fails

Counting $A v_{n}(2143,3142,254613)$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.
Setting the kernel to zero

$$
0=B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1
$$

- Directly solving fails
- Let $t=t(x)$ be the desired solution

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.
Setting the kernel to zero

$$
0=B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1
$$

- Directly solving fails
- Let $t=t(x)$ be the desired solution
- The RHS yields: $\operatorname{Bxt}(x)=B-1$

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

Using the fact that $B x t(x)=B-1$, the kernel becomes

Counting $\mathrm{Av}_{n}(2143,3142,254613)$

Using the fact that $\operatorname{Bxt}(x)=B-1$, the kernel becomes $B^{3} x+B^{2} x^{2}-3 B^{2} x-B^{2}+B x+3 B-2$

Counting $A v_{n}(2143,3142,254613)$

Using the fact that $\operatorname{Bxt}(x)=B-1$, the kernel becomes $B^{3} x+B^{2} x^{2}-3 B^{2} x-B^{2}+B x+3 B-2=(x B-1)\left(B^{2}+(x-3) B+2\right)$.

Counting $A v_{n}(2143,3142,254613)$

Using the fact that $\operatorname{Bxt}(x)=B-1$, the kernel becomes

$$
B^{3} x+B^{2} x^{2}-3 B^{2} x-B^{2}+B x+3 B-2=(x B-1)\left(B^{2}+(x-3) B+2\right)
$$

Solving (now) yields

$$
\begin{aligned}
A(x, 1)=B= & \frac{3-x-\sqrt{1-6 x+x^{2}}}{2} \\
& =1+x+2 x^{2}+6 x^{3}+22 x^{4}+90 x^{5}+\cdots
\end{aligned}
$$

Thank You!

