On two recent conjectures in pattern avoidance

Jonathan S. Bloom
Rutgers University

Howard University - March 2015

Overview

Part I

Overview

Part I

- On a conjecture of Dokos, et al.

Overview

Part I

- On a conjecture of Dokos, et al.
- REU group under Sagan

Overview

Part I

- On a conjecture of Dokos, et al.
- REU group under Sagan
- A new statistic-preserving bijection between two old sets

Overview

Part I

- On a conjecture of Dokos, et al.
- REU group under Sagan
- A new statistic-preserving bijection between two old sets

Part II (w/ Burstein)

- On a conjecture of Egge (2012)

Overview

Part I

- On a conjecture of Dokos, et al.
- REU group under Sagan
- A new statistic-preserving bijection between two old sets

Part II (w/ Burstein)

- On a conjecture of Egge (2012)
- A collection of pattern classes all counted by the large Schröder numbers

Part I

(A statistic-preserving bijection)

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Example

$$
\pi=7426153 \in S_{7}
$$

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Example

$$
\pi=7426153 \in S_{7}
$$

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Example

$$
\pi=7426153 \in S_{7}
$$

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Example

$$
\pi=7426153 \in S_{7}
$$

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Example

$$
\pi=7426153 \in S_{7}
$$

\times						
			\times			
					\times	
	\times					
						\times
		\times				
				\times		

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Example

$$
\pi=7426153 \in S_{7}
$$

\times						
			\times			
					\times	
	\times					
						\times
		\times				
				\times		

Patterns

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Example

$$
\pi=7426153 \in S_{7}
$$

Patterns

- π contains the pattern 2413 because...

Classical Pattern Avoidance

- Let S_{n} denotes the set of permutations of length n

Example

$$
\pi=7426153 \in S_{7}
$$

Patterns

- π contains the pattern 2413 because...
- π avoids the pattern 123 because...

Wilf-equivalence

Notation
In general, for any $\sigma \in S_{k}$ we denote by

$$
A v_{n}(\sigma)
$$

the set of all permutations (length n) that avoid σ.

Wilf-equivalence

Notation
In general, for any $\sigma \in S_{k}$ we denote by

$$
A v_{n}(\sigma)
$$

the set of all permutations (length n) that avoid σ. In this setting σ is called a pattern.

Wilf-equivalence

Notation

In general, for any $\sigma \in S_{k}$ we denote by

$$
A v_{n}(\sigma)
$$

the set of all permutations (length n) that avoid σ. In this setting σ is called a pattern.

We say two patterns $\sigma, \tau \in S_{k}$ are Wilf-equivalent provided

$$
\left|A v_{n}(\sigma)\right|=\left|A v_{n}(\tau)\right|
$$

for all n.

Wilf-equivalence

Notation

In general, for any $\sigma \in S_{k}$ we denote by

$$
A v_{n}(\sigma)
$$

the set of all permutations (length n) that avoid σ. In this setting σ is called a pattern.

We say two patterns $\sigma, \tau \in S_{k}$ are Wilf-equivalent provided

$$
\left|A v_{n}(\sigma)\right|=\left|A v_{n}(\tau)\right|
$$

for all n. We write $\sigma \sim \tau$.

Wilf-equivalence

Notation

In general, for any $\sigma \in S_{k}$ we denote by

$$
A v_{n}(\sigma)
$$

the set of all permutations (length n) that avoid σ. In this setting σ is called a pattern.

We say two patterns $\sigma, \tau \in S_{k}$ are Wilf-equivalent provided

$$
\left|A v_{n}(\sigma)\right|=\left|A v_{n}(\tau)\right|
$$

for all n. We write $\sigma \sim \tau$.
All patterns τ of length 3 are Wilf-equivalent. Moreover,

$$
\left|A v_{n}(\tau)\right|=\frac{1}{1+n}\binom{2 n}{n}
$$

Patterns of length 4

We have:

Class	n	5	6	7	8	9
14	4	3	103	512	2740	15485
91245	\ldots					
1	2	3	4	103	513	2761
1	3	2	4	103	513	2762
15767	94359	\ldots				

Patterns of length 4

We have:

Class $\mid n$	5	6	7	8	9	\ldots
14	4	2	3	103	512	2740
15485	91245	\ldots				
1	2	3	4	103	513	2761
1	3	2	4	103	513	2762
15767	94359	\ldots				

Classic results

- There are exactly 3 Wilf-classes in S_{4}

Patterns of length 4

We have:

Class $\mid n$	5	6	7	8	9	\ldots
1	4	2	3	103	512	2740
15485	91245	\ldots				
1	2	3	4	103	513	2761
1	3	2	4	103	513	2762
1	15793	94359	\ldots			

Classic results

- There are exactly 3 Wilf-classes in S_{4}
- Stankova (1994) proved that $1423 \sim 2413$

Patterns of length 4

We have:

Class $\mid n$	5	6	7	8	9	\ldots
1	4	2	3	103	512	2740
15485	91245	\ldots				
1	2	3	4	103	513	2761
1	3	2	4	103	513	2762
1	15793	94359	\ldots			

Classic results

- There are exactly 3 Wilf-classes in S_{4}
- Stankova (1994) proved that $1423 \sim 2413$
- Proof idea: Same recursive structure

Patterns of length 4

We have:

Class $\mid n$	5	6	7	8	9	\ldots
1	4	2	3	103	512	2740
15485	91245	\ldots				
1	2	3	4	103	513	2761
1	15767	94359	\ldots			
1	3	2	4	103	513	2762
15793	94776	\ldots				

Classic results

- There are exactly 3 Wilf-classes in S_{4}
- Stankova (1994) proved that $1423 \sim 2413$
- Proof idea: Same recursive structure

New results

Patterns of length 4

We have:

Class $\mid n$	5	6	7	8	9	\ldots
1	4	2	3	103	512	2740
15485	91245	\ldots				
1	2	3	4	103	513	2761
1	3	2	4	103	513	2762
1	15793	94359	\ldots			

Classic results

- There are exactly 3 Wilf-classes in S_{4}
- Stankova (1994) proved that $1423 \sim 2413$
- Proof idea: Same recursive structure

New results

- We give (first) bijective proof that $1423 \sim 2413$

Patterns of length 4

We have:

Class $\mid n$	5	6	7	8	9	\ldots
1	4	2	3	103	512	2740
15485	91245	\ldots				
1	2	3	4	103	513	2761
1	3	2	4	103	513	2762
15767	94359	\ldots				

Classic results

- There are exactly 3 Wilf-classes in S_{4}
- Stankova (1994) proved that $1423 \sim 2413$
- Proof idea: Same recursive structure

New results

- We give (first) bijective proof that $1423 \sim 2413$
- Resolves a conjecture of Dokos, et al. (2012)

Permutation Statistics

Consider the permutation $\pi=65182734$

			\times				
					\times		
\times							
	\times						
							\times
						\times	
				\times			
		\times					

Permutation Statistics

Consider the permutation $\pi=65182734$

Some statistics:

Permutation Statistics

Consider the permutation $\pi=65182734$

Some statistics:

- Descents are positions i such that $\pi_{i}>\pi_{i+1}$

Permutation Statistics

Consider the permutation $\pi=65182734$

Some statistics:

- Descents are positions i such that $\pi_{i}>\pi_{i+1}$

Permutation Statistics

Consider the permutation $\pi=65182734$

Some statistics:

- Descents are positions i such that $\pi_{i}>\pi_{i+1}$
- RL maxima are positions i such NE of π_{i} we have nothing!

Permutation Statistics

Consider the permutation $\pi=65182734$

Some statistics:

- Descents are positions i such that $\pi_{i}>\pi_{i+1}$
- RL maxima are positions i such NE of π_{i} we have nothing!

Permutation Statistics

Consider the permutation $\pi=65182734$

Some statistics:

- Descents are positions i such that $\pi_{i}>\pi_{i+1}$
- RL maxima are positions i such NE of π_{i} we have nothing!

Permutation Statistics

Consider the permutation $\pi=65182734$

Some statistics:

- Descents are positions i such that $\pi_{i}>\pi_{i+1}$
- RL maxima are positions i such NE of π_{i} we have nothing!
- - bonds

Refined Wilf-equivalence

Fix any permutation statistic f.

Refined Wilf-equivalence

Fix any permutation statistic f. We say two patterns σ, τ are f-Wilf-equivalent, and write

$$
\sigma \sim_{f} \tau
$$

provided there is a bijection $\Theta: A v_{n}(\sigma) \rightarrow A v_{n}(\tau)$ that preserves the f statistic,

Refined Wilf-equivalence

Fix any permutation statistic f. We say two patterns σ, τ are f-Wilf-equivalent, and write

$$
\sigma \sim_{f} \tau
$$

provided there is a bijection $\Theta: A v_{n}(\sigma) \rightarrow A v_{n}(\tau)$ that preserves the f statistic, i.e.,

$$
f=f \circ \Theta
$$

Refined Wilf-equivalence

Fix any permutation statistic f. We say two patterns σ, τ are f-Wilf-equivalent, and write

$$
\sigma \sim_{f} \tau
$$

provided there is a bijection $\Theta: A v_{n}(\sigma) \rightarrow A v_{n}(\tau)$ that preserves the f statistic, i.e.,

$$
f=f \circ \Theta
$$

or

$$
\sum_{\pi \in \operatorname{Av}(\sigma)} x^{|\pi|} t^{f(\pi)}=\sum_{\pi \in \operatorname{Av}(\tau)} x^{|\pi|} t^{f(\pi)}
$$

Refined Wilf-equivalence

Fix any permutation statistic f. We say two patterns σ, τ are f-Wilf-equivalent, and write

$$
\sigma \sim_{f} \tau
$$

provided there is a bijection $\Theta: A v_{n}(\sigma) \rightarrow A v_{n}(\tau)$ that preserves the f statistic, i.e.,

$$
f=f \circ \Theta
$$

or

$$
\sum_{\pi \in \operatorname{Av}(\sigma)} x^{|\pi|} t^{f(\pi)}=\sum_{\pi \in \operatorname{Av}(\tau)} x^{|\pi|} t^{f(\pi)}
$$

Conjecture (Dokos, et al., 2012)
The patterns 1423 and 2413 are Maj-Wilf-equivalent

- $\operatorname{Maj}(\pi)$ is sum of descents of π.

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves set of descents (hence Major index),

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves set of descents (hence Major index), RL-maxima,

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds,

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves set of descents (hence Major index), $R L$-maxima, -bonds, and position of n and $n-1$.

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves set of descents (hence Major index), $R L$-maxima, -bonds, and position of n and $n-1$. Additionally, if

$$
\pi \in \mathrm{Av}_{n}(1423) \cap A \mathrm{v}_{n}(2413)
$$

then $\Theta(\pi)=\pi$.

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves set of descents (hence Major index), $R L$-maxima, -bonds, and position of n and $n-1$. Additionally, if

$$
\pi \in \mathrm{Av}_{n}(1423) \cap A \mathrm{v}_{n}(2413)
$$

then $\Theta(\pi)=\pi$.
Note

- Θ is not the same as Stankova's "implied" bijection.

$1423 \sim 2413$ revisited

Theorem (Bloom, 2014)
There is an explicit bijection

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

such that Θ preserves set of descents (hence Major index), $R L$-maxima, -bonds, and position of n and $n-1$. Additionally, if

$$
\pi \in A \mathrm{v}_{n}(1423) \cap A \mathrm{v}_{n}(2413)
$$

then $\Theta(\pi)=\pi$.
Note

- Θ is not the same as Stankova's "implied" bijection.
- Stankova's isomorphism does not preserve these statistics.

Anatomy of a 1423

Anatomy of a 1423

Anatomy of a 1423

Anatomy of a 1423

Anatomy of a 2413

\times
\times

Anatomy of a 2413

Anatomy of a 2413

Anatomy of a 2413

Given $\pi \in \mathrm{Av}_{n}(1423)$ it decomposes as:

Given $\pi \in \mathrm{Av}_{n}(1423)$ it decomposes as:

Given $\pi \in \mathrm{Av}_{n}(1423)$ it decomposes as:

By induction,

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

exists and preserves statistics

- Including RL maxima!

By induction,

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

exists and preserves statistics

- Including RL maxima!

By induction,

$$
\Theta: A v_{n}(1423) \rightarrow A v_{n}(2413)
$$

exists and preserves statistics

- Including RL maxima!
* Applying Θ to each part maintains structure!

Lastly, we must stitch $\Theta\left(\pi^{(1)}\right)$ and $\Theta\left(\pi^{(2)}\right)$ back together...

Lastly, we must stitch $\Theta\left(\pi^{(1)}\right)$ and $\Theta\left(\pi^{(2)}\right)$ back together...

Lastly, we must stitch $\Theta\left(\pi^{(1)}\right)$ and $\Theta\left(\pi^{(2)}\right)$ back together...

Lastly, we must stitch $\Theta\left(\pi^{(1)}\right)$ and $\Theta\left(\pi^{(2)}\right)$ back together...

Doing this we obtain our final result:

Part II

(Pattern classes \& large Schröder numbers)

Large Schröder numbers

The large Schröder are

$$
1,2,6,22,90,394,1806, \ldots
$$

They count LOTS!

1. Lattice paths from $(0,0)$ to $(2 n, 0)$ that consist of up/down/over steps - must remain above x-axis.
2. Separable permutations: All permutations built by

where π and σ are separable.

Egge's motivation

Consider the following table

$n=$	2	3	4	5	6	7	\ldots
$\mathrm{Av}_{n}(2143,3142)$	2	6	22	90	395	1823	\ldots
nth large Schröder $\#$	2	6	22	90	394	1806	\ldots

Egge's motivation

Consider the following table

$n=$	2	3	4	5	6	7	\ldots
$\mathrm{Av}_{n}(2143,3142)$	2	6	22	90	395	1823	\ldots
nth large Schröder \#	2	6	22	90	394	1806	\ldots

Question:
Are there any patterns $\tau \in S_{6}$ such that the sets

$$
\left|\mathrm{Av}_{n}(2143,3142, \tau)\right|
$$

are counted by the large Schröder numbers?

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|\operatorname{Av}_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2},
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|\operatorname{Av}_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved $\tau=246135$

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2},
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved $\tau=246135$
- simple permutations

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|\operatorname{Av}_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved $\tau=246135$
- simple permutations
- Bloom and Burstein proved the remaining 4 cases

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved $\tau=246135$
- simple permutations
- Bloom and Burstein proved the remaining 4 cases
- 263514: simple permutations

Egge triples \& unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in\{246135,254613,524361,546132,263514\}$. Then

$$
\sum_{n \geq 0}\left|A v_{n}(2143,3142, \tau)\right| x^{n}=\frac{3-x-\sqrt{1-6 x+x^{2}}}{2}
$$

- $\mathrm{Av}_{n}(2143,3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved $\tau=246135$
- simple permutations
- Bloom and Burstein proved the remaining 4 cases
- 263514: simple permutations
- 254613, 524361, 546132: decomposition using LR-maxima

Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., $\operatorname{Av}(2413,3142)$ are also counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.

Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., $\operatorname{Av}(2413,3142)$ are also counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.
General phenomenon

Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., $\operatorname{Av}(2413,3142)$ are also counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.
General phenomenon
Let X and Y be two sets of patterns so that for some k

$$
\left|X \cap S_{k}\right| \neq\left|Y \cap S_{k}\right|
$$

Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., $\operatorname{Av}(2413,3142)$ are also counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.
General phenomenon
Let X and Y be two sets of patterns so that for some k

$$
\left|X \cap S_{k}\right| \neq\left|Y \cap S_{k}\right|
$$

If

$$
\left|A v_{n}(X)\right|=\left|A v_{n}(Y)\right| \quad(\text { for all } n)
$$

then, we say X and Y are an unbalanced Wilf-equivalence.

Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., $\operatorname{Av}(2413,3142)$ are also counted by large Schröder numbers, so

$$
\left|A v_{n}(2413,3142)\right|=\left|A v_{n}(2143,3142, \tau)\right|
$$

where $\tau \in\{246135,263514,254613,524361,546132\}$.
General phenomenon
Let X and Y be two sets of patterns so that for some k

$$
\left|X \cap S_{k}\right| \neq\left|Y \cap S_{k}\right|
$$

If

$$
\left|A v_{n}(X)\right|=\left|A v_{n}(Y)\right| \quad(\text { for all } n)
$$

then, we say X and Y are an unbalanced Wilf-equivalence.

- Examples of unbalanced Wilf-equivalence abound!

Anatomy of $(2143,3142)$-avoiders

If $\pi \in \mathrm{Av}_{n}(2143,3142)$, then it looks like:

Anatomy of $(2143,3142)$-avoiders

If $\pi \in \operatorname{Av}_{n}(2143,3142)$, then it looks like:

Anatomy of $(2143,3142)$-avoiders

If $\pi \in \mathrm{Av}_{n}(2143,3142)$, then it looks like:

Anatomy of $(2143,3142)$-avoiders

If $\pi \in \operatorname{Av}_{n}(2143,3142)$, then it looks like:
horizontal gap

Counting $\tau=254613$

Idea We consider three cases:

- No horizontal gaps
- Exactly 1 horizontal gap
- At least 2 horizontal gaps

Set

$$
A(t, x)=\sum_{\pi \in \operatorname{Av}(2143,3142, \tau)} x^{|\pi|} t^{\ell(\pi)}
$$

where $\ell(\pi)$ is the number of leading maxima in π.

Counting $\tau=254613$

Case 1: No Horizontal gap
$\pi \in \mathrm{Av}_{n}(2143,3142, \tau)$ has no horizontal gap iff

$$
\pi=12 \ldots n .
$$

Counting $\tau=254613$

Case 1: No Horizontal gap
$\pi \in \operatorname{Av}_{n}(2143,3142, \tau)$ has no horizontal gap iff

$$
\pi=12 \ldots n .
$$

Counted by

$$
\frac{1}{1-t x}
$$

Counting $\tau=254613$

Case 2: Exactly 1 horizontal gap

Counting $\tau=254613$

Case 2: Exactly 1 horizontal gap

Counting $\tau=254613$

Case 2: Exactly 1 horizontal gap

Counting $\tau=254613$

Case 2: Exactly 1 horizontal gap

Counting $\tau=254613$

Case 2: Exactly 1 horizontal gap

Counting $\tau=254613$

Case 2: Exactly 1 horizontal gap

This translates to

$$
\frac{t x E}{1-x}
$$

where

$$
E(t, x)=\frac{B-t A}{1-t}-\frac{1}{1-t x} \quad \text { and } \quad B=A(1, x)
$$

Counting $\tau=254613$

Case 3: At least 2 horizontal gap

Counting $\tau=254613$

Case 3: At least 2 horizontal gap

Counting $\tau=254613$

Case 3: At least 2 horizontal gap

Counting $\tau=254613$

All Together...

$$
\begin{aligned}
A(t, x) & =\frac{1}{1-t x}+\frac{t x E}{1-x} \\
& +\left(A-\frac{1}{1-t x}\right)\left(\frac{x(B-1)}{(1-x)(1-t x)}\right)\left(\frac{1}{1-\frac{t x(B-1)}{1-t x}}\right)
\end{aligned}
$$

where

$$
E(t, x)=\frac{B-t A}{1-t}-\frac{1}{1-t x} \quad \text { and } \quad B=A(1, x)
$$

Counting $\tau=254613$

With a bit of algebra (thanks to Mathematica)

Counting $\tau=254613$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.

Counting $\tau=254613$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.
Setting the kernel to zero

$$
0=B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1
$$

Counting $\tau=254613$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.
Setting the kernel to zero

$$
0=B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1
$$

- Directly solving fails

Counting $\tau=254613$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.
Setting the kernel to zero

$$
0=B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1
$$

- Directly solving fails
- Let $t=t(x)$ be the desired solution

Counting $\tau=254613$

With a bit of algebra (thanks to Mathematica)

$$
\begin{aligned}
& \left(\frac{B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1}{(1-t)(1-x)(1-B t x)}\right) A_{*} \\
& =\frac{x t}{1-x}\left(\frac{B t x-B+1}{(t-1)(t x-1)}\right)
\end{aligned}
$$

where $A_{*}=A-\frac{1}{1-x t}$.
Setting the kernel to zero

$$
0=B t^{3} x^{2}+B t^{2} x^{2}-B t^{2} x-B t x^{2}+B x-t^{2} x+t-1
$$

- Directly solving fails
- Let $t=t(x)$ be the desired solution
- The RHS yields: $\operatorname{Bxt}(x)=B-1$

Counting $\tau=254613$

Using the fact that $B x t(x)=B-1$, the kernel becomes

Counting $\tau=254613$

Using the fact that $\operatorname{Bxt}(x)=B-1$, the kernel becomes $B^{3} x+B^{2} x^{2}-3 B^{2} x-B^{2}+B x+3 B-2$

Counting $\tau=254613$

Using the fact that $\operatorname{Bxt}(x)=B-1$, the kernel becomes

$$
B^{3} x+B^{2} x^{2}-3 B^{2} x-B^{2}+B x+3 B-2=(x B-1)\left(B^{2}+(x-3) B+2\right)
$$

Counting $\tau=254613$

Using the fact that $\operatorname{Bxt}(x)=B-1$, the kernel becomes

$$
B^{3} x+B^{2} x^{2}-3 B^{2} x-B^{2}+B x+3 B-2=(x B-1)\left(B^{2}+(x-3) B+2\right)
$$

Solving (now) yields

$$
\begin{aligned}
A(1, x)=B= & \frac{3-x-\sqrt{1-6 x+x^{2}}}{2} \\
& =1+x+2 x^{2}+6 x^{3}+22 x^{4}+90 x^{5}+\cdots
\end{aligned}
$$

Thank You!

