On two recent conjectures in pattern avoidance

Jonathan S. Bloom
Rutgers University

Howard University – March 2015
Overview

Part I

▶ On a conjecture of Dokos, et al.
▶ REU group under Sagan
▶ A new statistic-preserving bijection between two old sets

Part II (w/ Burstein)
▶ On a conjecture of Egge (2012)
▶ A collection of pattern classes all counted by the large Schröder numbers
Overview

Part I

▶ On a conjecture of Dokos, et al.
Overview

Part I

- On a conjecture of Dokos, et al.
 - REU group under Sagan

Part II (w/ Burstein)

- On a conjecture of Egge (2012)
 - A collection of pattern classes all counted by the large Schröder numbers
Overview

Part I

- On a conjecture of Dokos, et al.
 - REU group under Sagan
 - A new statistic-preserving bijection between two old sets
Overview

Part I
▶ On a conjecture of Dokos, et al.
 ▶ REU group under Sagan
 ▶ A new statistic-preserving bijection between two old sets

Part II (w/ Burstein)
▶ On a conjecture of Egge (2012)
Overview

Part I

▶ On a conjecture of Dokos, et al.
 ▶ REU group under Sagan
 ▶ A new statistic-preserving bijection between two old sets

Part II (w/ Burstein)

▶ On a conjecture of Egge (2012)
 ▶ A collection of pattern classes all counted by the large Schröder numbers
Part I

(A statistic-preserving bijection)
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n

Example

$$\pi = 7 \ 4 \ 2 \ 6 \ 1 \ 5 \ 3 \in S_7$$
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n

Example

$\pi = 7 4 2 6 1 5 3 \in S_7$
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n

Example

$$\pi = 7\ 4\ 2\ 6\ 1\ 5\ 3 \in S_7$$
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n

Example

$$\pi = 7 \ 4 \ 2 \ 6 \ 1 \ 5 \ 3 \in S_7$$

![Pattern Diagram]

π contains the pattern 2 4 1 3 because...

π avoids the pattern 1 2 3 because...
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n

Example

$$\pi = 7 \ 4 \ 2 \ 6 \ 1 \ 5 \ 3 \in S_7$$

[Diagram of pattern avoidance]
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n

Example

$\pi = 7 \ 4 \ 2 \ 6 \ 1 \ 5 \ 3 \in S_7$

Patterns
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n

Example

$$\pi = 7 \ 4 \ 2 \ 6 \ 1 \ 5 \ 3 \in S_7$$

Patterns

- π contains the pattern 2 4 1 3 because...
Classical Pattern Avoidance

- Let S_n denotes the set of permutations of length n

Example

$$\pi = 7 \ 4 \ 2 \ 6 \ 1 \ 5 \ 3 \in S_7$$

Patterns

- π contains the pattern 2 4 1 3 because...
- π avoids the pattern 1 2 3 because...
Wilf-equivalence

Notation

In general, for any \(\sigma \in S_k \) we denote by

\[\text{Av}_n(\sigma) \]

the set of all permutations (length \(n \)) that avoid \(\sigma \).
Wilf-equivalence

Notation

In general, for any $\sigma \in S_k$ we denote by

$$\operatorname{Av}_n(\sigma)$$

the set of all permutations (length n) that avoid σ. In this setting σ is called a pattern.
Wilf-equivalence

Notation

In general, for any $\sigma \in S_k$ we denote by

\[
\text{Av}_n(\sigma)
\]

the set of all permutations (length n) that avoid σ. In this setting σ is called a pattern.

We say two patterns $\sigma, \tau \in S_k$ are **Wilf-equivalent** provided

\[
|\text{Av}_n(\sigma)| = |\text{Av}_n(\tau)|
\]

for all n.

Wilf-equivalence

Notation
In general, for any $\sigma \in S_k$ we denote by

$$\text{Av}_n(\sigma)$$

the set of all permutations (length n) that avoid σ. In this setting σ is called a pattern.

We say two patterns $\sigma, \tau \in S_k$ are Wilf-equivalent provided

$$|\text{Av}_n(\sigma)| = |\text{Av}_n(\tau)|$$

for all n. We write $\sigma \sim \tau$.
Wilf-equivalence

Notation

In general, for any $\sigma \in S_k$ we denote by

$$\text{Av}_n(\sigma)$$

the set of all permutations (length n) that avoid σ. In this setting σ is called a pattern.

We say two patterns $\sigma, \tau \in S_k$ are Wilf-equivalent provided

$$|\text{Av}_n(\sigma)| = |\text{Av}_n(\tau)|$$

for all n. We write $\sigma \sim \tau$.

All patterns τ of length 3 are Wilf-equivalent. Moreover,

$$|\text{Av}_n(\tau)| = \frac{1}{1 + n} \binom{2n}{n}.$$
Patterns of length 4

We have:

<table>
<thead>
<tr>
<th>Class</th>
<th>n</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 2 3</td>
<td>103</td>
<td>512</td>
<td>2740</td>
<td>15485</td>
<td>91245</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>103</td>
<td>513</td>
<td>2761</td>
<td>15767</td>
<td>94359</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1 3 2 4</td>
<td>103</td>
<td>513</td>
<td>2762</td>
<td>15793</td>
<td>94776</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Patterns of length 4

We have:

<table>
<thead>
<tr>
<th>Class</th>
<th>n</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 2 3</td>
<td>103</td>
<td>512</td>
<td>2740</td>
<td>15485</td>
<td>91245</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>103</td>
<td>513</td>
<td>2761</td>
<td>15767</td>
<td>94359</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1 3 2 4</td>
<td>103</td>
<td>513</td>
<td>2762</td>
<td>15793</td>
<td>94776</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Classic results

- There are exactly 3 Wilf-classes in S_4
Patterns of length 4

We have:

<table>
<thead>
<tr>
<th>Class</th>
<th>n</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 2 3</td>
<td>103</td>
<td>512</td>
<td>2740</td>
<td>15485</td>
<td>91245</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>103</td>
<td>513</td>
<td>2761</td>
<td>15767</td>
<td>94359</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>1 3 2 4</td>
<td>103</td>
<td>513</td>
<td>2762</td>
<td>15793</td>
<td>94776</td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

Classic results

- There are exactly 3 Wilf-classes in S_4
- Stankova (1994) proved that $1 4 2 3 \sim 2 4 1 3$
Patterns of length 4

We have:

<table>
<thead>
<tr>
<th>Class</th>
<th>n</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 2 3</td>
<td>103</td>
<td>512</td>
<td>2740</td>
<td>15485</td>
<td>91245</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>103</td>
<td>513</td>
<td>2761</td>
<td>15767</td>
<td>94359</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>1 3 2 4</td>
<td>103</td>
<td>513</td>
<td>2762</td>
<td>15793</td>
<td>94776</td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

Classic results

- There are exactly 3 Wilf-classes in S_4
- Stankova (1994) proved that 1 4 2 3 ∼ 2 4 1 3
 - Proof idea: Same recursive structure
Patterns of length 4

We have:

<table>
<thead>
<tr>
<th>Class</th>
<th>n</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 2 3</td>
<td>103</td>
<td>512</td>
<td>2740</td>
<td>15485</td>
<td>91245</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>103</td>
<td>513</td>
<td>2761</td>
<td>15767</td>
<td>94359</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1 3 2 4</td>
<td>103</td>
<td>513</td>
<td>2762</td>
<td>15793</td>
<td>94776</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Classic results

▶ There are exactly 3 Wilf-classes in S_4
▶ Stankova (1994) proved that $1 4 2 3 \sim 2 4 1 3$
 ▶ Proof idea: Same recursive structure

New results
Patterns of length 4

We have:

<table>
<thead>
<tr>
<th>Class</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 2 3</td>
<td>103</td>
<td>512</td>
<td>2740</td>
<td>15485</td>
<td>91245</td>
<td>...</td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>103</td>
<td>513</td>
<td>2761</td>
<td>15767</td>
<td>94359</td>
<td>...</td>
</tr>
<tr>
<td>1 3 2 4</td>
<td>103</td>
<td>513</td>
<td>2762</td>
<td>15793</td>
<td>94776</td>
<td>...</td>
</tr>
</tbody>
</table>

Classic results

- There are exactly 3 Wilf-classes in S_4
- Stankova (1994) proved that $1 4 2 3 \sim 2 4 1 3$
 - Proof idea: Same recursive structure

New results

- We give (first) bijective proof that $1 4 2 3 \sim 2 4 1 3$
Patterns of length 4

We have:

<table>
<thead>
<tr>
<th>Class</th>
<th>n</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 2 3</td>
<td>103</td>
<td>512</td>
<td>2740</td>
<td>15485</td>
<td>91245</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>103</td>
<td>513</td>
<td>2761</td>
<td>15767</td>
<td>94359</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1 3 2 4</td>
<td>103</td>
<td>513</td>
<td>2762</td>
<td>15793</td>
<td>94776</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Classic results

- There are exactly 3 Wilf-classes in S_4
- Stankova (1994) proved that $1 4 2 3 \sim 2 4 1 3$
 - Proof idea: Same recursive structure

New results

- We give (first) bijective proof that $1 4 2 3 \sim 2 4 1 3$
- Resolves a conjecture of Dokos, et al. (2012)
Permutation Statistics

Consider the permutation $\pi = 6 \ 5 \ 1 \ 8 \ 2 \ 7 \ 3 \ 4$
Permutation Statistics

Consider the permutation $\pi = 6 \ 5 \ 1 \ 8 \ 2 \ 7 \ 3 \ 4$

Some statistics:
Permutation Statistics

Consider the permutation $\pi = 6 \ 5 \ 1 \ 8 \ 2 \ 7 \ 3 \ 4$

Some statistics:
- Descents are positions i such that $\pi_i > \pi_{i+1}$
Permutation Statistics

Consider the permutation $\pi = 6 \ 5 \ 1 \ 8 \ 2 \ 7 \ 3 \ 4$

Some statistics:

- Descents are positions i such that $\pi_i > \pi_{i+1}$
Permutation Statistics

Consider the permutation $\pi = 6 \ 5 \ 1 \ 8 \ 2 \ 7 \ 3 \ 4$

Some statistics:
- Descents are positions i such that $\pi_i > \pi_{i+1}$
- RL maxima are positions i such NE of π_i; we have nothing!
Permutation Statistics

Consider the permutation \(\pi = 6 \ 5 \ 1 \ 8 \ 2 \ 7 \ 3 \ 4 \)

Some statistics:

- Descents are **positions** \(i \) such that \(\pi_i > \pi_{i+1} \)
- RL maxima are **positions** \(i \) such NE of \(\pi_i \); we have nothing!
Permutation Statistics

Consider the permutation $\pi = 6 \ 5 \ 1 \ 8 \ 2 \ 7 \ 3 \ 4$

Some statistics:

- Descents are positions i such that $\pi_i > \pi_{i+1}$
- RL maxima are positions i such NE of π_i; we have nothing!
Permutation Statistics

Consider the permutation $\pi = 6 \ 5 \ 1 \ 8 \ 2 \ 7 \ 3 \ 4$

Some statistics:

- Descents are positions i such that $\pi_i > \pi_{i+1}$
- RL maxima are positions i such NE of π_i; we have nothing!
- — bonds
Refined Wilf-equivalence

Fix any permutation statistic f.

Conjecture (Dokos, et al., 2012) The patterns 1423 and 2413 are Maj-Wilf-equivalent $\text{Maj}(\pi)$ is sum of descents of π.
Refined Wilf-equivalence

Fix any permutation statistic \(f \). We say two patterns \(\sigma, \tau \) are \(f \)-Wilf-equivalent, and write

\[
\sigma \sim_f \tau,
\]

provided there is a bijection \(\Theta : \text{Av}_n(\sigma) \rightarrow \text{Av}_n(\tau) \) that preserves the \(f \) statistic,
Refined Wilf-equivalence

Fix any permutation statistic \(f \). We say two patterns \(\sigma, \tau \) are \(f \)-Wilf-equivalent, and write

\[
\sigma \sim_f \tau,
\]

provided there is a bijection \(\Theta : \text{Av}_n(\sigma) \rightarrow \text{Av}_n(\tau) \) that preserves the \(f \) statistic, i.e.,

\[
f = f \circ \Theta,
\]

Conjecture (Dokos, et al., 2012)
The patterns \(1423 \) and \(2413 \) are Maj-Wilf-equivalent ▶ Maj(\(\pi \)) is sum of descents of \(\pi \).
Refined Wilf-equivalence

Fix any permutation statistic f. We say two patterns σ, τ are f-Wilf-equivalent, and write

$$\sigma \sim_f \tau,$$

provided there is a bijection $\Theta : \text{Av}_n(\sigma) \rightarrow \text{Av}_n(\tau)$ that preserves the f statistic, i.e.,

$$f = f \circ \Theta,$$

or

$$\sum_{\pi \in \text{Av}(\sigma)} x^{\pi \vert} f(\pi) = \sum_{\pi \in \text{Av}(\tau)} x^{\pi \vert} f(\pi).$$
Refined Wilf-equivalence

Fix any permutation statistic f. We say two patterns σ, τ are f-Wilf-equivalent, and write

$$\sigma \sim_f \tau,$$

provided there is a bijection $\Theta : \text{Av}_n(\sigma) \rightarrow \text{Av}_n(\tau)$ that preserves the f statistic, i.e.,

$$f = f \circ \Theta,$$

or

$$\sum_{\pi \in \text{Av}(\sigma)} x^{|\pi|} t^{f(\pi)} = \sum_{\pi \in \text{Av}(\tau)} x^{|\pi|} t^{f(\pi)}.$$

Conjecture (Dokos, et al., 2012)

The patterns 1423 and 2413 are Maj-Wilf-equivalent

- Maj(π) is sum of descents of π.
1423 ∼ 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

\[\Theta : \text{Av}_n(1423) \rightarrow \text{Av}_n(2413) \]

such that \(\Theta \) preserves set of descents (hence Major index),

Note ▶ \(\Theta \) is not the same as Stankova’s “implied” bijection.
▶ Stankova’s isomorphism does not preserve these statistics.
1423 \sim 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

\[\Theta : \text{Av}_n(1423) \rightarrow \text{Av}_n(2413) \]

such that \(\Theta \) preserves set of descents (hence Major index), RL-maxima,

\[\text{RL-maxima} \]

Note ▶ \(\Theta \) is not the same as Stankova's "implied" bijection.

\[\text{▶ Stankova's isomorphism does not preserve these statistics.} \]
1423 \sim 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

\[\Theta : \text{Av}_n(1423) \rightarrow \text{Av}_n(2413) \]

such that \(\Theta \) preserves set of descents (hence Major index), RL-maxima, -bonds,
1423 \sim 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

$$\Theta : \text{Av}_n(1423) \rightarrow \text{Av}_n(2413)$$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and $n - 1$.

Note Θ is not the same as Stankova's "implied" bijection. Stankova's isomorphism does not preserve these statistics.
1423 ∼ 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

$$\Theta : \text{Av}_n(1423) \rightarrow \text{Av}_n(2413)$$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and $n - 1$. Additionally, if

$$\pi \in \text{Av}_n(1423) \cap \text{Av}_n(2413)$$

then $\Theta(\pi) = \pi$.

Note ▶ Θ is not the same as Stankova’s “implied” bijection. ▶ Stankova’s isomorphism does not preserve these statistics.
1423 ~ 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

\[\Theta : \text{Av}_n(1423) \rightarrow \text{Av}_n(2413) \]

such that \(\Theta \) preserves set of descents (hence Major index), RL-maxima, -bonds, and position of \(n \) and \(n - 1 \). Additionally, if

\[\pi \in \text{Av}_n(1423) \cap \text{Av}_n(2413) \]

then \(\Theta(\pi) = \pi \).

Note

- \(\Theta \) is not the same as Stankova’s “implied” bijection.
1423 \sim 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

$$\Theta : \text{Av}_n(1423) \to \text{Av}_n(2413)$$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and $n-1$. Additionally, if

$$\pi \in \text{Av}_n(1423) \cap \text{Av}_n(2413)$$

*then $\Theta(\pi) = \pi$.

Note

- Θ is not the same as Stankova’s “implied” bijection.
- Stankova’s isomorphism does not preserve these statistics.
Anatomy of a 1423
Anatomy of a 1423
Anatomy of a 1423
Anatomy of a 1423

- Decreasing columns
Anatomy of a 2413
Anatomy of a 2413
Anatomy of a 2413

- “Increasing” columns
Anatomy of a 2413

- "Increasing" columns
Given $\pi \in \text{Av}_n(1423)$ it decomposes as:
Given $\pi \in Av_n(1423)$ it decomposes as:
Given $\pi \in \text{Av}_n(1423)$ it decomposes as:
By induction, \(\Theta : \text{Av}_n \rightarrow \text{Av}_n \) exists and preserves statistics! Including RL maxima! Applying \(\Theta \) to each part maintains structure!
By induction,

\[\Theta : \text{Av}_n(1423) \rightarrow \text{Av}_n(2413) \]

exists and preserves statistics

- Including RL maxima!
\(\Theta(\pi^{(1)}) = A' \)
\(\Theta(\pi^{(2)}) = B' \)

By induction,
\[
\Theta : \text{Av}_n(1423) \rightarrow \text{Av}_n(2413)
\]
exists and preserves statistics
- Including RL maxima!
By induction,

$$\Theta : \text{Av}_n(1423) \to \text{Av}_n(2413)$$

exists and preserves statistics

- Including RL maxima!

⭐ Applying Θ to each part maintains structure!
Lastly, we must stitch $\Theta(\pi^{(1)})$ and $\Theta(\pi^{(2)})$ back together...
Lastly, we must stitch $\Theta(\pi^{(1)})$ and $\Theta(\pi^{(2)})$ back together...
Lastly, we must stitch $\Theta(\pi^{(1)})$ and $\Theta(\pi^{(2)})$ back together...
Lastly, we must stitch $\Theta(\pi^{(1)})$ and $\Theta(\pi^{(2)})$ back together...
Doing this we obtain our final result:

\[\Theta(\pi) = A' \times B' \]
Part II

(Pattern classes & large Schröder numbers)
Large Schröder numbers

The large Schröder are

1, 2, 6, 22, 90, 394, 1806,

They count LOTS!

1. Lattice paths from (0, 0) to (2n, 0) that consist of up/down/over steps – must remain above x-axis.

2. Separable permutations: All permutations built by

where \(\pi \) and \(\sigma \) are separable.
Egge’s motivation

Consider the following table

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n =$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Av}_n(2143, 3142)$</td>
<td>2</td>
<td>6</td>
<td>22</td>
<td>90</td>
<td>395</td>
<td>1823</td>
<td>...</td>
</tr>
<tr>
<td>nth large Schröder #</td>
<td>2</td>
<td>6</td>
<td>22</td>
<td>90</td>
<td>394</td>
<td>1806</td>
<td>...</td>
</tr>
</tbody>
</table>
Consider the following table

<table>
<thead>
<tr>
<th>$n =$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Av}_n(2143, 3142)$</td>
<td>2</td>
<td>6</td>
<td>22</td>
<td>90</td>
<td>395</td>
<td>1823</td>
<td>…</td>
</tr>
<tr>
<td>nth large Schröder $#$</td>
<td>2</td>
<td>6</td>
<td>22</td>
<td>90</td>
<td>394</td>
<td>1806</td>
<td>…</td>
</tr>
</tbody>
</table>

Question:
Are there any patterns $\tau \in S_6$ such that the sets

$$| \text{Av}_n(2143, 3142, \tau) |$$

are counted by the large Schröder numbers?
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n \geq 0} |\text{Av}_n(2143, 3142, \tau)| x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},$$

▶ $\text{Av}_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

▶ These values of τ (and 180° rotations) are only patterns

Proved...

▶ Burstein and Pantone proved $\tau = 246135$

▶ Bloom and Burstein proved the remaining 4 cases

▶ 263514: simple permutations

▶ $254613, 524361, 546132$: decomposition using LR-maxima
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n \geq 0} |Av_n(2143, 3142, \tau)|x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},$$

- $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n \geq 0} |\text{Av}_n(2143, 3142, \tau)|x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},$$

- $\text{Av}_n(2143, 3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix \(\tau \in \{246135, 254613, 524361, 546132, 263514\} \). Then

\[
\sum_{n \geq 0} |\text{Av}_n(2143, 3142, \tau)|x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},
\]

- \(\text{Av}_n(2143, 3142, \tau) \) is counted by the large Schröder numbers
- These values of \(\tau \) (and 180° rotations) are only patterns

Proved...
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n \geq 0} |\text{Av}_n(2143, 3142, \tau)|x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},$$

- $\text{Av}_n(2143, 3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...
- Burstein and Pantone proved $\tau = 246135$
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n \geq 0} |Av_n(2143, 3142, \tau)|x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},$$

- $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...
- Burstein and Pantone proved $\tau = 246135$
 - simple permutations
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n \geq 0} |\text{Av}_n(2143, 3142, \tau)| x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},$$

- $\text{Av}_n(2143, 3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix \(\tau \in \{246135, 254613, 524361, 546132, 263514\} \). Then

\[
\sum_{n \geq 0} |\text{Av}_n(2143, 3142, \tau)| x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},
\]

- \(\text{Av}_n(2143, 3142, \tau) \) is counted by the large Schröder numbers
- These values of \(\tau \) (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved \(\tau = 246135 \)
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases
 - 263514: simple permutations
Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n \geq 0} |Av_n(2143, 3142, \tau)|x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},$$

- $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases
 - 263514: simple permutations
 - 254613, 524361, 546132: decomposition using LR-maxima
Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., \(\text{Av}(2413, 3142) \) are also counted by large Schröder numbers, so

\[
|\text{Av}_n(2413, 3142)| = |\text{Av}_n(2143, 3142, \tau)|,
\]

where \(\tau \in \{246135, 263514, 254613, 524361, 546132\} \).

▶ Examples of unbalanced Wilf-equivalence abound!
Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., $Av(2413, 3142)$ are also counted by large Schröder numbers, so

$$|Av_n(2413, 3142)| = |Av_n(2143, 3142, \tau)|,$$

where $\tau \in \{246135, 263514, 254613, 524361, 546132\}$.

General phenomenon
Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., $\text{Av}(2413, 3142)$ are also counted by large Schröder numbers, so

$$|\text{Av}_n(2413, 3142)| = |\text{Av}_n(2143, 3142, \tau)|,$$

where $\tau \in \{246135, 263514, 254613, 524361, 546132\}$.

General phenomenon
Let X and Y be two sets of patterns so that for some k

$$|X \cap S_k| \neq |Y \cap S_k|.$$
Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., \(\text{Av}(2413, 3142) \) are also counted by large Schröder numbers, so

\[|\text{Av}_n(2413, 3142)| = |\text{Av}_n(2143, 3142, \tau)|, \]

where \(\tau \in \{246135, 263514, 254613, 524361, 546132\} \).

General phenomenon
Let \(X \) and \(Y \) be two sets of patterns so that for some \(k \)

\[|X \cap S_k| \neq |Y \cap S_k|. \]

If

\[|\text{Av}_n(X)| = |\text{Av}_n(Y)| \quad (\text{for all } n), \]

then, we say \(X \) and \(Y \) are an **unbalanced Wilf-equivalence**.
Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e., \(\text{Av}(2413, 3142) \) are also counted by large Schröder numbers, so

\[
| \text{Av}_n(2413, 3142) | = | \text{Av}_n(2143, 3142, \tau) |,
\]

where \(\tau \in \{246135, 263514, 254613, 524361, 546132\} \).

General phenomenon

Let \(X \) and \(Y \) be two sets of patterns so that for some \(k \)

\[
| X \cap S_k | \neq | Y \cap S_k |.
\]

If

\[
| \text{Av}_n(X) | = | \text{Av}_n(Y) | \quad (\text{for all } n),
\]

then, we say \(X \) and \(Y \) are an unbalanced Wilf-equivalence.

▶ Examples of unbalanced Wilf-equivalence abound!
Anatomy of (2143, 3142)-avoiders

If $\pi \in Av_n(2143, 3142)$, then it looks like:
Anatomy of \((2143, 3142)\)-avoiders

If \(\pi \in \text{Av}_n(2143, 3142) \), then it looks like:
Anatomy of $(2143, 3142)$-avoiders

If $\pi \in \text{Av}_n(2143, 3142)$, then it looks like:

\[\alpha^1 \times \alpha^2 \times \alpha^g \]

leading maxima
Anatomy of $(2143, 3142)$-avoiders

If $\pi \in \text{Av}_n(2143, 3142)$, then it looks like:

- horizontal gap
- leading maxima

\[\alpha^1 \]
\[\alpha^2 \]
\[\alpha^g \]
Counting $\tau = 254613$

Idea We consider three cases:

- No horizontal gaps
- Exactly 1 horizontal gap
- At least 2 horizontal gaps

Set

$$A(t, x) = \sum_{\pi \in \text{Av}(2143, 3142, \tau)} x^{\left| \pi \right|} t^{\ell(\pi)},$$

where $\ell(\pi)$ is the number of leading maxima in π.
Case 1: No Horizontal gap

\[\pi \in Av_n(2143, 3142, \tau) \text{ has no horizontal gap iff } \]

\[\pi = 1 \ 2 \ \ldots \ \ n. \]
Counting \(\tau = 254613 \)

Case 1: No Horizontal gap

\(\pi \in \text{Av}_n(2143, 3142, \tau) \) has no horizontal gap iff

\[\pi = 1 \ 2 \ \ldots \ n. \]

Counted by

\[\frac{1}{1 - tx}. \]
Counting $\tau = 254613$

Case 2: Exactly 1 horizontal gap

This translates to $t x E_1 - x$ where $E(t, x) = B - t A_1 - t - 1 - t x$ and $B = A(1, x)$.
Counting $\tau = 254613$

Case 2: Exactly 1 horizontal gap

This translates to $t x E_1 - x$ where $E(t, x) = B - t A_1 - t_1 - x$ and $B = A(1, x)$.
Counting $\tau = 254613$

Case 2: Exactly 1 horizontal gap

This translates to $t x E_1 - x$ where $E(t, x) = B - tA_1 - t - 1$ and $B = A(1, x)$.

\[\alpha^1 \]
Counting $\tau = 254613$

Case 2: Exactly 1 horizontal gap

This translates to $t_x E_1 - x$ where $E(t, x) = B - t A_1 - t - 1 - t x$ and $B = A_1(1, x)$.
Counting $\tau = 254613$

Case 2: Exactly 1 horizontal gap

This translates to $t \times E - x$ where $E(t, x) = B - tA - 1 - t - x$ and $B = A(1, x)$.
Counting $\tau = 254613$

Case 2: Exactly 1 horizontal gap

This translates to

$$\frac{txE}{1 - x}$$

where

$$E(t, x) = \frac{B - tA}{1 - t} - \frac{1}{1 - tx}$$

and

$$B = A(1, x).$$
Counting $\tau = 254613$

Case 3: At least 2 horizontal gap

\[\alpha^g \]

rightmost horizontal gap

α's
Counting $\tau = 254613$

Case 3: At least 2 horizontal gap

- Add horizontal gap
- Add block into gap
Counting $\tau = 254613$

Case 3: At least 2 horizontal gap

- Add horizontal gap
- Add block into gap
Counting $\tau = 254613$

All Together...

$$A(t, x) = \frac{1}{1 - tx} + \frac{txE}{1 - x}$$

$$+ \left(A - \frac{1}{1 - tx} \right) \left(\frac{x(B - 1)}{(1 - x)(1 - tx)} \right) \left(\frac{1}{1 - \frac{tx(B - 1)}{1 - tx}} \right),$$

where

$$E(t, x) = \frac{B - tA}{1 - t} - \frac{1}{1 - tx} \quad \text{and} \quad B = A(1, x).$$
Counting $\tau = 254613$

With a bit of algebra (thanks to Mathematica)
Counting $\tau = 254613$

With a bit of algebra (thanks to Mathematica)

\[
\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)} \right) A_*
\]

\[
= \frac{xt}{1 - x} \left(\frac{Btx - B + 1}{(t - 1)(tx - 1)} \right)
\]

where $A_* = A - \frac{1}{1 - xt}$.

▶ Setting the kernel to zero

\[
0 = Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1.
\]

▶ Directly solving fails

▶ Let $t = t(x)$ be the desired solution

▶ The RHS yields:

\[
Btx - B + 1
\]

\[
= (t - 1)(tx - 1)
\]
Counting $\tau = 254613$

With a bit of algebra (thanks to Mathematica)

$$
\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)} \right) A_*
$$

$$
= \frac{xt}{1 - x} \left(\frac{Btx - B + 1}{(t - 1)(tx - 1)} \right)
$$

where $A_* = A - \frac{1}{1 - xt}$.

Setting the kernel to zero

$$
0 = Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1.
$$
Counting $\tau = 254613$

With a bit of algebra (thanks to Mathematica)

\[
\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)} \right) A_*
\]

\[
= \frac{xt}{1 - x} \left(\frac{Btx - B + 1}{(t - 1)(tx - 1)} \right)
\]

where $A_* = A - \frac{1}{1 - xt}$.

Setting the kernel to zero

\[
0 = Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1.
\]

▶ Directly solving fails
Counting $\tau = 254613$

With a bit of algebra (thanks to Mathematica)

\[
\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)} \right) A_*
\]

\[= \frac{xt}{1-x} \left(\frac{Btx - B + 1}{(t - 1)(tx - 1)} \right) \]

where $A_* = A - \frac{1}{1 - xt}$.

Setting the kernel to zero

\[0 = Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1.\]

- Directly solving fails
- Let $t = t(x)$ be the desired solution
Counting $\tau = 254613$

With a bit of algebra (thanks to Mathematica)

\[
\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)} \right) A_*
\]

\[
= \frac{xt}{1-x} \left(\frac{Btx - B + 1}{(t-1)(tx - 1)} \right)
\]

where $A_* = A - \frac{1}{1 - xt}$.

Setting the kernel to zero

\[
0 = Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1.
\]

- Directly solving fails
- Let $t = t(x)$ be the desired solution
 - The RHS yields: $Bxt(x) = B - 1$
Counting $\tau = 254613$

Using the fact that $B_{xt}(x) = B - 1$, the kernel becomes

\begin{align*}
B_3 x &+ B_2 x^2 - 3 B_2 x - B_2 + B x + 3 B - 2 \\
&= (xB - 1)(B_2 + (x - 3)B + 2) \\
&= 1 + x + 2x^2 + 6x^3 + 22x^4 + 90x^5 + \cdots
\end{align*}
Counting $\tau = 254613$

Using the fact that $Bxt(x) = B - 1$, the kernel becomes

$$B^3x + B^2x^2 - 3B^2x - B^2 + Bx + 3B - 2$$
Counting $\tau = 254613$

Using the fact that $\mathcal{B}xt(x) = B - 1$, the kernel becomes

Counting $\tau = 254613$

Using the fact that $B^x t(x) = B − 1$, the kernel becomes

Solving (now) yields

$$A(1, x) = B = \frac{3 − x − \sqrt{1 − 6x + x^2}}{2} = 1 + x + 2x^2 + 6x^3 + 22x^4 + 90x^5 + \cdots$$
Thank You!