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» On a conjecture of Dokos, et al.

» REU group under Sagan
» A new statistic-preserving bijection between two old sets

Part Il (w/ Burstein)
» On a conjecture of Egge (2012)

» A collection of pattern classes all counted by the large
Schréder numbers
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» 7 contains the pattern 2 4 1 3 because...

» 7 avoids the pattern 1 2 3 because...
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Notation
In general, for any o € S we denote by

Av,(0o)

the set of all permutations (length n) that avoid o. In this setting
o is called a pattern.

We say two patterns o, 7 € Si are Wilf-equivalent provided
| Ava(0)] = [ Ava(T)]
for all n. We write o ~ 7.

All patterns 7 of length 3 are Wilf-equivalent. Moreover,

= 25 (2).
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Patterns of length 4
We have:

Classiln| 5 6 7 8 9

1423103 512 2740 15485 91245
1234|103 513 2761 15767 94359
1324|103 513 2762 15793 94776

Classic results

> There are exactly 3 Wilf-classes in Sy
» Stankova (1994) proved that 1423 ~2413

» Proof idea: Same recursive structure

New results
» We give (first) bijective proof that 1423 ~2413

> Resolves a conjecture of Dokos, et al. (2012)
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Permutation Statistics

Consider the permutation 7t=651827 34

X
X

/X N
N X/

X

X
X
X

Some statistics:
> Descents are positions / such that m; > 7
» RL maxima are positions / such NE of 7; we have nothing!

» — bonds
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Refined Wilf-equivalence

Fix any permutation statistic . We say two patterns o, T are
f-Wilf-equivalent, and write

O ~FT,

provided there is a bijection © : Av,(0) — Av,(7) that preserves
the f statistic, i.e.,

f=fo0,
or
DAL L SENLC)
wEAV(o) mEAV(T)

Conjecture (Dokos, et al., 2012)
The patterns 1423 and 2413 are Maj-Wilf-equivalent

» Maj(m) is sum of descents of 7.
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1423 ~ 2413 revisited

Theorem (Bloom, 2014)
There is an explicit bijection

© : Av,(1423) — Av,(2413)

such that © preserves set of descents (hence Major index),
RL-maxima, -bonds, and position of n and n — 1. Additionally, if

™ € Avn(1423) N Av,(2413)
then ©(7) = .

Note
» © is not the same as Stankova's “implied” bijection.

» Stankova's isomorphism does not preserve these statistics.
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X

» Decreasing columns

I—x

DA
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Anatomy of a 2413

X

» “Increasing” columns

x

1|

DA



Anatomy of a 2413

Q

» “Increasing” columns

|
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‘e X

L 4

o(=V) = - (1) =

By induction,
© : Av,(1423) — Av,(2413)

exists and preserves statistics

» Including RL maxima!

* Applying © to each part maintains structure!
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Doing this we obtain our final result:

‘e X

'-

O(m) =
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(Pattern classes & large Schroder numbers)



Large Schroder numbers

The large Schroder are
1,2,6,22, 90,394, 1806, . . ..

They count LOTS!

1. Lattice paths from (0,0) to (2n,0) that consist of
up/down /over steps — must remain above x-axis.

2. Separable permutations: All permutations built by

(o m

where 7 and o are separable.
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Egge’s motivation

Consider the following table

4 5 6 7

n—

22 90 395 1823

2 3
Av,(2143,3142) |2 6
2 6 22 90 394 1806

nth large Schroder #

Question:
Are there any patterns 7 € Sg such that the sets

| Avn(2143,3142, 7))

are counted by the large Schréder numbers?
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Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)
Fix T € {246135,254613,524361,546132,263514}. Then

3—x—+v1—6x+x2
2 b

> | Ava(2143,3142, 7)|x" =
n>0

> Av,(2143,3142,7) is counted by the large Schréder numbers

» These values of T (and 180° rotations) are only patterns

Proved...
» Burstein and Pantone proved ™ = 246135
» simple permutations
» Bloom and Burstein proved the remaining 4 cases

» 263514: simple permutations
» 254613, 524361, 546132: decomposition using LR-maxima
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Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e.,
Av(2413,3142) are also counted by large Schroder numbers, so

| Avn(2413,3142)| = | Av,(2143,3142, )],
where T € {246135, 263514, 254613, 524361, 546132}.

General phenomenon
Let X and Y be two sets of patterns so that for some k

\XﬂSk\ #‘Yﬂsk’.

| Avp(X)| = | Avp(Y)] (for all n),

then, we say X and Y are an unbalanced Wilf-equivalence.

» Examples of unbalanced Wilf-equivalence abound!
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Anatomy of (2143, 3142)-avoiders
If 7 € Av,(2143,3142), then it looks like:

horizontal gap

1 7
—_—
leading maxima



Counting 7 = 254613

Idea We consider three cases:
» No horizontal gaps
» Exactly 1 horizontal gap
> At least 2 horizontal gaps

Set
A(t,x) = Z x|l ()

mEAV(2143,3142,7)

where ¢(r) is the number of leading maxima in 7.
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Counting 7 = 254613

Case 2: Exactly 1 horizontal gap

—_—
X
Oél

This translates to

txE

1—x
where

B—tA 1
E(t,x) = and B = A(1, x).
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Counting 7 = 254613
Case 3: At least 2 horizontal gap

rightmost horizontal gap

/ » Add horizontal gap
D » Add block into gap




Counting 7 = 254613

All Together...

1 x(B - 1) 1
+(a- 1—tx><(1—x)(1—tx)> <1_rx1(8—1)>’

—tx
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Counting 7 = 254613

With a bit of algebra (thanks to Mathematica)

Bt3x?2 + Bt?x? — Bt?x — Btx? + Bx — t’x +t — 1 A
(1—t)(1 - x)(1 — Btx) .

. xt Btx —B+1

C1—x \(t—1)(tx—1)
1

1—xt’

where A, = A —

Setting the kernel to zero
0 = Bt3x? + Bt’x® — Bt’x — Btx® + Bx — t°x + t — 1.
» Directly solving fails

» Let t = t(x) be the desired solution
» The RHS yields: Bxt(x) =B —1
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Using the fact that Bxt(x) = B — 1, the kernel becomes

B3x+B?x?—3B?x—B?4Bx+3B—2 = (xB—1)(B?+(x—3)B+2).



Counting 7 = 254613

Using the fact that Bxt(x) = B — 1, the kernel becomes

B3x+B?x?—3B?x—B?4Bx+3B—2 = (xB—1)(B?+(x—3)B+2).

Solving (now) yields

3—x—+vV1—6x+x2
2
=14 x+2x°+6x3+22x* +90x> + - -

A(l,x) =B =




Thank Youl



