On two recent conjectures in pattern avoidance

Jonathan S. Bloom Rutgers University

Howard University - March 2015

Part I

Part I

• On a conjecture of Dokos, et al.

Part I

- On a conjecture of Dokos, et al.
 - REU group under Sagan

Part I

- On a conjecture of Dokos, et al.
 - REU group under Sagan
 - A new statistic-preserving bijection between two old sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Part I

- On a conjecture of Dokos, et al.
 - REU group under Sagan
 - A new statistic-preserving bijection between two old sets

Part II (w/ Burstein)

On a conjecture of Egge (2012)

Part I

- On a conjecture of Dokos, et al.
 - REU group under Sagan
 - A new statistic-preserving bijection between two old sets

Part II (w/ Burstein)

- On a conjecture of Egge (2012)
 - A collection of pattern classes all counted by the large Schröder numbers

Part I

(A statistic-preserving bijection)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Let S_n denotes the set of permutations of length n

• Let S_n denotes the set of permutations of length n

Example

$$\pi = 7\ 4\ 2\ 6\ 1\ 5\ 3\in S_7$$

• Let S_n denotes the set of permutations of length n

Example

$$\pi =$$
 7 4 2 6 1 5 3 \in S_7

• Let S_n denotes the set of permutations of length n

Example

$$\pi =$$
 7 4 2 6 1 5 3 \in S_7

• Let S_n denotes the set of permutations of length n

Example

$$\pi =$$
 7 4 2 6 1 5 3 \in S_7

• Let S_n denotes the set of permutations of length n

Example

$$\pi =$$
 7 4 2 6 1 5 3 \in S_7

• Let S_n denotes the set of permutations of length n

Example

$$\pi =$$
 7 4 2 6 1 5 3 \in S_7

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Patterns

• Let S_n denotes the set of permutations of length n

Example

$$\pi = 7\ 4\ 2\ 6\ 1\ 5\ 3\in S_7$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Patterns

• π contains the pattern 2 4 1 3 because...

• Let S_n denotes the set of permutations of length n

Example

$$\pi =$$
 7 4 2 6 1 5 3 \in S_7

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Patterns

- π contains the pattern 2 4 1 3 because...
- π avoids the pattern 1 2 3 because...

Notation

In general, for any $\sigma \in S_k$ we denote by

$\operatorname{Av}_n(\sigma)$

the set of all permutations (length n) that avoid σ .

Notation

In general, for any $\sigma \in S_k$ we denote by

$Av_n(\sigma)$

the set of all permutations (length n) that avoid σ . In this setting σ is called a **pattern**.

Notation

In general, for any $\sigma \in S_k$ we denote by

 $Av_n(\sigma)$

the set of all permutations (length n) that avoid σ . In this setting σ is called a **pattern**.

We say two patterns $\sigma, \tau \in S_k$ are **Wilf-equivalent** provided

$$|\operatorname{Av}_n(\sigma)| = |\operatorname{Av}_n(\tau)|$$

for all n.

Notation

In general, for any $\sigma \in S_k$ we denote by

 $Av_n(\sigma)$

the set of all permutations (length n) that avoid σ . In this setting σ is called a **pattern**.

We say two patterns $\sigma, \tau \in S_k$ are **Wilf-equivalent** provided

$$|\operatorname{Av}_n(\sigma)| = |\operatorname{Av}_n(\tau)|$$

for all *n*. We write $\sigma \sim \tau$.

Notation

In general, for any $\sigma \in S_k$ we denote by

 $Av_n(\sigma)$

the set of all permutations (length n) that avoid σ . In this setting σ is called a **pattern**.

We say two patterns $\sigma, \tau \in S_k$ are **Wilf-equivalent** provided

$$|\operatorname{Av}_n(\sigma)| = |\operatorname{Av}_n(\tau)|$$

for all *n*. We write $\sigma \sim \tau$.

All patterns τ of length 3 are Wilf-equivalent. Moreover,

$$|\operatorname{Av}_n(\tau)| = \frac{1}{1+n} \binom{2n}{n}.$$

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

(ロ)、

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classic results

There are exactly 3 Wilf-classes in S₄

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Classic results

- ▶ There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Classic results

- ▶ There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

Classic results

- ▶ There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure

New results

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

Classic results

- ▶ There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure

New results

• We give (first) bijective proof that 1 4 2 3 \sim 2 4 1 3

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

Classic results

- ▶ There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure

New results

 \blacktriangleright We give (first) bijective proof that 1 4 2 3 \sim 2 4 1 3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Resolves a conjecture of Dokos, et al. (2012)

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some statistics:

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some statistics:

• Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some statistics:

• Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

Some statistics:

- Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$
- RL maxima are **positions** *i* such NE of π_i we have nothing!

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

Some statistics:

- Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$
- RL maxima are **positions** *i* such NE of π_i we have nothing!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

Some statistics:

- Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$
- RL maxima are **positions** *i* such NE of π_i we have nothing!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ
Permutation Statistics

Consider the permutation $\pi=6~5~1~8~2~7~3~4$

Some statistics:

- Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$
- RL maxima are **positions** *i* such NE of π_i we have nothing!

– bonds

Fix any permutation statistic f.

Fix any permutation statistic f. We say two patterns σ, τ are **f-Wilf-equivalent**, and write

 $\sigma \sim_f \tau$,

provided there is a bijection Θ : $Av_n(\sigma) \rightarrow Av_n(\tau)$ that preserves the f statistic,

Fix any permutation statistic f. We say two patterns σ, τ are **f-Wilf-equivalent**, and write

 $\sigma \sim_f \tau$,

provided there is a bijection $\Theta : Av_n(\sigma) \to Av_n(\tau)$ that preserves the f statistic, i.e.,

 $f = f \circ \Theta$,

Fix any permutation statistic f. We say two patterns σ, τ are **f-Wilf-equivalent**, and write

 $\sigma \sim_f \tau$,

provided there is a bijection Θ : $Av_n(\sigma) \rightarrow Av_n(\tau)$ that preserves the f statistic, i.e.,

$$f = f \circ \Theta$$
,

or

$$\sum_{\pi \in \mathsf{Av}(\sigma)} x^{|\pi|} t^{f(\pi)} = \sum_{\pi \in \mathsf{Av}(\tau)} x^{|\pi|} t^{f(\pi)}.$$

Fix any permutation statistic f. We say two patterns σ, τ are **f-Wilf-equivalent**, and write

 $\sigma \sim_f \tau$,

provided there is a bijection Θ : $Av_n(\sigma) \rightarrow Av_n(\tau)$ that preserves the f statistic, i.e.,

$$f=f\circ\Theta,$$

or

$$\sum_{\pi\in\mathsf{Av}(\sigma)} x^{|\pi|} t^{f(\pi)} = \sum_{\pi\in\mathsf{Av}(\tau)} x^{|\pi|} t^{f(\pi)}.$$

Conjecture (Dokos, et al., 2012)

The patterns 1423 and 2413 are Maj-Wilf-equivalent

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

such that Θ preserves set of descents (hence Major index),

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

such that Θ preserves set of descents (hence Major index), RL-maxima,

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds,

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and n - 1.

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and n - 1. Additionally, if

 $\pi \in \operatorname{Av}_n(1423) \cap \operatorname{Av}_n(2413)$

then $\Theta(\pi) = \pi$.

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and n - 1. Additionally, if

$$\pi \in \operatorname{Av}_n(1423) \cap \operatorname{Av}_n(2413)$$

then $\Theta(\pi) = \pi$.

Note

 \blacktriangleright Θ is not the same as Stankova's "implied" bijection.

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and n - 1. Additionally, if

$$\pi \in \operatorname{Av}_n(1423) \cap \operatorname{Av}_n(2413)$$

then $\Theta(\pi) = \pi$.

Note

- \blacktriangleright Θ is not the same as Stankova's "implied" bijection.
- Stankova's isomorphism does not preserve these statistics.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Given $\pi \in Av_n(1423)$ it decomposes as:

right-most column

Given $\pi \in Av_n(1423)$ it decomposes as:

right-most column

Given $\pi \in Av_n(1423)$ it decomposes as:

right-most column

By induction,

$$\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$$

(日)、(四)、(E)、(E)、(E)

exists and preserves statistics

Including RL maxima!

$$\Theta(\pi^{(1)}) = A' \qquad \Theta(\pi^{(2)}) = B' \qquad \times$$

By induction,

$$\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

exists and preserves statistics

Including RL maxima!

$$\Theta(\pi^{(1)}) = A' A' \Theta(\pi^{(2)}) = B' X$$

By induction,

$$\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$$

exists and preserves statistics

Including RL maxima!

 \star Applying Θ to each part maintains structure!

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

・ロト ・聞ト ・ヨト ・ヨト

Doing this we obtain our final result:

Part II

(Pattern classes & large Schröder numbers)

<□ > < @ > < E > < E > E のQ @

Large Schröder numbers

The large Schröder are

 $1, 2, 6, 22, 90, 394, 1806, \ldots.$

They count LOTS!

- 1. Lattice paths from (0,0) to (2*n*,0) that consist of up/down/over steps must remain above *x*-axis.
- 2. Separable permutations: All permutations built by

where π and σ are separable.

Egge's motivation

Consider the following table

n =	2	3	4	5	6	7	
Av _n (2143, 3142)	2	6	22	90	395	1823	
$\mathit{n}\mathrm{th}$ large Schröder $\#$	2	6	22	90	394	1806	•••
Egge's motivation

Consider the following table

<i>n</i> =	2	3	4	5	6	7	
Av _n (2143, 3142)	2	6	22	90	395	1823	
$\mathit{n}\mathrm{th}$ large Schröder $\#$	2	6	22	90	394	1806	

Question:

Are there any patterns $au \in S_6$ such that the sets

 $|Av_n(2143, 3142, \tau)|$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are counted by the large Schröder numbers?

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2},$$

・ロト・日本・モート モー うへぐ

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

Proved...

• Burstein and Pantone proved $\tau = 246135$

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases
 - 263514: simple permutations

Conjecture (Egge, AMS Fall Eastern Meeting in 2012) Fix $\tau \in \{246135, 254613, 524361, 546132, 263514\}$. Then

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

- $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

- Burstein and Pantone proved au = 246135
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases
 - 263514: simple permutations
 - ► 254613, 524361, 546132: decomposition using LR-maxima

It is well known that the separable permutations, i.e., Av(2413, 3142) are also counted by large Schröder numbers, so

 $|\operatorname{Av}_n(2413, 3142)| = |\operatorname{Av}_n(2143, 3142, \tau)|,$

where $\tau \in \{246135, 263514, 254613, 524361, 546132\}$.

It is well known that the separable permutations, i.e., Av(2413, 3142) are also counted by large Schröder numbers, so

$$|\operatorname{Av}_n(2413, 3142)| = |\operatorname{Av}_n(2143, 3142, \tau)|,$$

where $\tau \in \{246135, 263514, 254613, 524361, 546132\}$.

General phenomenon

It is well known that the separable permutations, i.e., Av(2413, 3142) are also counted by large Schröder numbers, so

$$|\operatorname{Av}_n(2413, 3142)| = |\operatorname{Av}_n(2143, 3142, \tau)|,$$

where $\tau \in \{246135, 263514, 254613, 524361, 546132\}.$

General phenomenon

Let X and Y be two sets of patterns so that for some k

 $|X \cap S_k| \neq |Y \cap S_k|.$

It is well known that the separable permutations, i.e., Av(2413, 3142) are also counted by large Schröder numbers, so

$$|\operatorname{Av}_n(2413, 3142)| = |\operatorname{Av}_n(2143, 3142, \tau)|,$$

where $\tau \in \{246135, 263514, 254613, 524361, 546132\}$.

General phenomenon

Let X and Y be two sets of patterns so that for some k

$$|X \cap S_k| \neq |Y \cap S_k|.$$

lf

$$|\operatorname{Av}_n(X)| = |\operatorname{Av}_n(Y)|$$
 (for all n),

then, we say X and Y are an **unbalanced Wilf-equivalence**.

It is well known that the separable permutations, i.e., Av(2413, 3142) are also counted by large Schröder numbers, so

$$|\operatorname{Av}_n(2413, 3142)| = |\operatorname{Av}_n(2143, 3142, \tau)|,$$

where $\tau \in \{246135, 263514, 254613, 524361, 546132\}.$

General phenomenon

Let X and Y be two sets of patterns so that for some k

 $|X \cap S_k| \neq |Y \cap S_k|.$

lf

$$|\operatorname{Av}_n(X)| = |\operatorname{Av}_n(Y)|$$
 (for all n),

then, we say X and Y are an **unbalanced Wilf-equivalence**.

Examples of unbalanced Wilf-equivalence abound!

If $\pi \in Av_n(2143, 3142)$, then it looks like:

・ロト・日本・モート モー うへぐ

If $\pi \in Av_n(2143, 3142)$, then it looks like:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

If $\pi \in Av_n(2143, 3142)$, then it looks like:

If $\pi \in Av_n(2143, 3142)$, then it looks like:

Idea We consider three cases:

- No horizontal gaps
- Exactly 1 horizontal gap
- At least 2 horizontal gaps

Set

$$A(t,x) = \sum_{\pi \in Av(2143,3142, au)} x^{|\pi|} t^{\ell(\pi)},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\ell(\pi)$ is the number of leading maxima in π .

Case 1: No Horizontal gap

 $\pi \in Av_n(2143, 3142, \tau)$ has no horizontal gap iff

 $\pi = 1 \ 2 \ \dots \ n$.

Case 1: No Horizontal gap

 $\pi \in Av_n(2143, 3142, \tau)$ has no horizontal gap iff

$$\pi = 1 \ 2 \ \dots \ n.$$

Counted by

$$\frac{1}{1-tx}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Case 2: Exactly 1 horizontal gap

Case 2: Exactly 1 horizontal gap

Counting au = 254613

Case 2: Exactly 1 horizontal gap

This translates to

$$\frac{txE}{1-x}$$

where

$$E(t,x) = \frac{B-tA}{1-t} - \frac{1}{1-tx}$$
 and $B = A(1,x).$

Counting $\tau = 254613$ Case 3: At least 2 horizontal gap

Counting $\tau = 254613$ Case 3: At least 2 horizontal gap

All Together...

$$\begin{aligned} A(t,x) &= \frac{1}{1-tx} + \frac{txE}{1-x} \\ &+ \Big(A - \frac{1}{1-tx}\Big) \left(\frac{x(B-1)}{(1-x)(1-tx)}\right) \left(\frac{1}{1 - \frac{tx(B-1)}{1-tx}}\right), \end{aligned}$$

where

$$E(t,x) = rac{B-tA}{1-t} - rac{1}{1-tx}$$
 and $B = A(1,x).$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

With a bit of algebra (thanks to Mathematica)

・ロト・日本・モト・モート ヨー うへで

With a bit of algebra (thanks to Mathematica)

$$\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)}\right)A_*$$
$$= \frac{xt}{1 - x}\left(\frac{Btx - B + 1}{(t - 1)(tx - 1)}\right)$$

・ロト・日本・モト・モート ヨー うへで

where
$$A_* = A - \frac{1}{1 - xt}$$
.

With a bit of algebra (thanks to Mathematica)

$$\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)}\right)A_*$$
$$= \frac{xt}{1 - x}\left(\frac{Btx - B + 1}{(t - 1)(tx - 1)}\right)$$

where
$$A_* = A - \frac{1}{1 - xt}$$
.

Setting the kernel to zero

$$0 = Bt^{3}x^{2} + Bt^{2}x^{2} - Bt^{2}x - Btx^{2} + Bx - t^{2}x + t - 1.$$

・ロト・日本・モト・モート ヨー うへで

With a bit of algebra (thanks to Mathematica)

$$\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)}\right)A_*$$
$$= \frac{xt}{1 - x}\left(\frac{Btx - B + 1}{(t - 1)(tx - 1)}\right)$$

where
$$A_* = A - \frac{1}{1 - xt}$$
.

Setting the kernel to zero

$$0 = Bt^{3}x^{2} + Bt^{2}x^{2} - Bt^{2}x - Btx^{2} + Bx - t^{2}x + t - 1.$$

Directly solving fails
With a bit of algebra (thanks to Mathematica)

$$\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)}\right)A_*$$
$$= \frac{xt}{1 - x}\left(\frac{Btx - B + 1}{(t - 1)(tx - 1)}\right)$$

where $A_* = A - \frac{1}{1 - xt}$.

Setting the kernel to zero

$$0 = Bt^{3}x^{2} + Bt^{2}x^{2} - Bt^{2}x - Btx^{2} + Bx - t^{2}x + t - 1.$$

- Directly solving fails
- Let t = t(x) be the desired solution

With a bit of algebra (thanks to Mathematica)

$$\left(\frac{Bt^3x^2 + Bt^2x^2 - Bt^2x - Btx^2 + Bx - t^2x + t - 1}{(1 - t)(1 - x)(1 - Btx)}\right)A_*$$
$$= \frac{xt}{1 - x} \left(\frac{Btx - B + 1}{(t - 1)(tx - 1)}\right)$$

where
$$A_* = A - rac{1}{1 - xt}$$

Setting the kernel to zero

$$0 = Bt^{3}x^{2} + Bt^{2}x^{2} - Bt^{2}x - Btx^{2} + Bx - t^{2}x + t - 1.$$

- Directly solving fails
- Let t = t(x) be the desired solution
 - The RHS yields: Bxt(x) = B 1

Using the fact that Bxt(x) = B - 1, the kernel becomes

Using the fact that Bxt(x) = B - 1, the kernel becomes

 $B^{3}x + B^{2}x^{2} - 3B^{2}x - B^{2} + Bx + 3B - 2$

Using the fact that Bxt(x) = B - 1, the kernel becomes

 $B^{3}x+B^{2}x^{2}-3B^{2}x-B^{2}+Bx+3B-2 = (xB-1)(B^{2}+(x-3)B+2).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Using the fact that Bxt(x) = B - 1, the kernel becomes

 $B^{3}x + B^{2}x^{2} - 3B^{2}x - B^{2} + Bx + 3B - 2 = (xB - 1)(B^{2} + (x - 3)B + 2).$

Solving (now) yields

$$A(1,x) = B = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2}$$
$$= 1 + x + 2x^2 + 6x^3 + 22x^4 + 90x^5 + \cdots$$

Thank You!

◆□ → < @ → < E → < E → ○ < ♡ < ♡</p>