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Part I
(A statistic-preserving bijection)
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Wilf-equivalence

Notation
In general, for any σ ∈ Sk we denote by

Avn(σ)

the set of all permutations (length n) that avoid σ.

In this setting
σ is called a pattern.

We say two patterns σ, τ ∈ Sk are Wilf-equivalent provided

|Avn(σ)| = |Avn(τ)|

for all n. We write σ ∼ τ .

All patterns τ of length 3 are Wilf-equivalent. Moreover,

|Avn(τ)| =
1

1 + n

(
2n

n

)
.
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Patterns of length 4
We have:

Class|n 5 6 7 8 9 . . .

1 4 2 3 103 512 2740 15485 91245 . . .
1 2 3 4 103 513 2761 15767 94359 . . .
1 3 2 4 103 513 2762 15793 94776 . . .

Classic results

I There are exactly 3 Wilf-classes in S4
I Stankova (1994) proved that 1 4 2 3 ∼ 2 4 1 3

I Proof idea: Same recursive structure

New results

I We give (first) bijective proof that 1 4 2 3 ∼ 2 4 1 3

I Resolves a conjecture of Dokos, et al. (2012)
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Consider the permutation π = 6 5 1 8 2 7 3 4
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↑ ↑ ↑ ↑
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↑ ↑ ↑

Some statistics:

I Descents are positions i such that πi > πi+1

I RL maxima are positions i such NE of πi we have nothing!

I − bonds
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Refined Wilf-equivalence

Fix any permutation statistic f .

We say two patterns σ, τ are
f-Wilf-equivalent, and write

σ ∼f τ,

provided there is a bijection Θ : Avn(σ)→ Avn(τ) that preserves
the f statistic, i.e.,

f = f ◦Θ,

or ∑
π∈Av(σ)

x |π|t f (π) =
∑

π∈Av(τ)

x |π|t f (π).

Conjecture (Dokos, et al., 2012)

The patterns 1423 and 2413 are Maj-Wilf-equivalent

I Maj(π) is sum of descents of π.
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1423 ∼ 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

Θ : Avn(1423)→ Avn(2413)

such that Θ preserves set of descents (hence Major index),

RL-maxima, -bonds, and position of n and n − 1. Additionally, if

π ∈ Avn(1423) ∩ Avn(2413)

then Θ(π) = π.

Note

I Θ is not the same as Stankova’s “implied” bijection.

I Stankova’s isomorphism does not preserve these statistics.
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Θ(π(1)) =

A

A′

×

×
×π(2) =

Θ(π(2)) =

B

B ′

By induction,
Θ : Avn(1423)→ Avn(2413)

exists and preserves statistics

I Including RL maxima!

? Applying Θ to each part maintains structure!
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Doing this we obtain our final result:

Θ(π) =

×

×
×
×

A′

B ′



Part II
(Pattern classes & large Schröder numbers)



Large Schröder numbers

The large Schröder are

1, 2, 6, 22, 90, 394, 1806, . . . .

They count LOTS!

1. Lattice paths from (0, 0) to (2n, 0) that consist of
up/down/over steps – must remain above x-axis.

2. Separable permutations: All permutations built by

π

σ π

σ

where π and σ are separable.



Egge’s motivation

Consider the following table

n = 2 3 4 5 6 7 . . .

Avn(2143, 3142) 2 6 22 90 395 1823 . . .
nth large Schröder # 2 6 22 90 394 1806 . . .

Question:
Are there any patterns τ ∈ S6 such that the sets

|Avn(2143, 3142, τ)|

are counted by the large Schröder numbers?
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Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix τ ∈ {246135, 254613, 524361, 546132, 263514}. Then

∑
n≥0
|Avn(2143, 3142, τ)|xn =

3− x −
√

1− 6x + x2

2
,

I Avn(2143, 3142, τ) is counted by the large Schröder numbers

I These values of τ (and 180◦ rotations) are only patterns

Proved...
I Burstein and Pantone proved τ = 246135

I simple permutations

I Bloom and Burstein proved the remaining 4 cases
I 263514: simple permutations
I 254613, 524361, 546132: decomposition using LR-maxima
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I These values of τ (and 180◦ rotations) are only patterns

Proved...
I Burstein and Pantone proved τ = 246135

I simple permutations

I Bloom and Burstein proved the remaining 4 cases
I 263514: simple permutations
I 254613, 524361, 546132: decomposition using LR-maxima
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Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e.,
Av(2413, 3142) are also counted by large Schröder numbers, so

|Avn(2413, 3142)| = |Avn(2143, 3142, τ)|,

where τ ∈ {246135, 263514, 254613, 524361, 546132}.

General phenomenon
Let X and Y be two sets of patterns so that for some k

|X ∩ Sk | 6= |Y ∩ Sk |.

If
|Avn(X )| = |Avn(Y )| (for all n),

then, we say X and Y are an unbalanced Wilf-equivalence.

I Examples of unbalanced Wilf-equivalence abound!
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Anatomy of (2143, 3142)-avoiders

If π ∈ Avn(2143, 3142), then it looks like:
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Counting τ = 254613

Idea We consider three cases:

I No horizontal gaps

I Exactly 1 horizontal gap

I At least 2 horizontal gaps

Set
A(t, x) =

∑
π∈Av(2143,3142,τ)

x |π|t`(π),

where `(π) is the number of leading maxima in π.



Counting τ = 254613

Case 1: No Horizontal gap

π ∈ Avn(2143, 3142, τ) has no horizontal gap iff

π = 1 2 . . . n.

Counted by
1

1− tx
.
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Counting τ = 254613

Case 2: Exactly 1 horizontal gap

×

α1

α1

××

α1

This translates to
txE

1− x

where

E (t, x) =
B − tA

1− t
− 1

1− tx
and B = A(1, x).
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Case 3: At least 2 horizontal gap
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Counting τ = 254613

All Together...

A(t, x) =
1

1− tx
+

txE

1− x

+
(
A− 1

1− tx

)( x(B − 1)

(1− x)(1− tx)

)(
1

1− tx(B−1)
1−tx

)
,

where

E (t, x) =
B − tA

1− t
− 1

1− tx
and B = A(1, x).



Counting τ = 254613

With a bit of algebra (thanks to Mathematica)

(
Bt3x2 + Bt2x2 − Bt2x − Btx2 + Bx − t2x + t − 1

(1− t)(1− x)(1− Btx)

)
A∗

=
xt

1− x

(
Btx − B + 1

(t − 1)(tx − 1)

)

where A∗ = A− 1

1− xt
.

Setting the kernel to zero

0 = Bt3x2 + Bt2x2 − Bt2x − Btx2 + Bx − t2x + t − 1.

I Directly solving fails
I Let t = t(x) be the desired solution

I The RHS yields: Bxt(x) = B − 1
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Counting τ = 254613

Using the fact that Bxt(x) = B − 1, the kernel becomes

B3x+B2x2−3B2x−B2+Bx+3B−2 = (xB−1)(B2+(x−3)B+2).

Solving (now) yields

A(1, x) = B =
3− x −

√
1− 6x + x2

2
= 1 + x + 2x2 + 6x3 + 22x4 + 90x5 + · · ·
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Solving (now) yields
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Thank You!


