Pattern Avoidance in Ferrers Boards and Set Partitions

Jonathan Bloom
(Joint work with Sergi Elizalde & Dan Saracino)

Dartmouth College

February, 2013
Ferrers Boards & Full Rook Placements

A Ferrers Board F is an $n \times n$ array of unit squares with a “bite” taken out of the N.E. section.

Definition

A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.

Notation

- F_n is the set of all Ferrers boards that admit a f.r.p. of n rooks.
- R_F is the set of all f.r.p. on $F \in F_n$ and $R_n := \bigcup F \in F_n R_F$.
A Ferrers Board F is an $n \times n$ array of unit squares with a “bite” taken out of the N.E. section.

For example

```
+ + +  +  +  +  +  +  +  
+  +  +  +  +  +  +  +  +  
+  +  +  +  +  +  +  +  +  
+  +  +  +  +  +  +  +  +  
```

Notation:
- F_n is the set of all Ferrers boards that admit a full rook placement (f.r.p.) of n rooks.
- R_F is the set of all f.r.p. on $F \in F_n$.
- $R_n := \bigcup_{F \in F_n} R_F$.
Ferrers Boards & Full Rook Placements

A Ferrers Board F is an $n \times n$ array of unit squares with a “bite” taken out of the N.E. section.

For example

\[\begin{array}{ccccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\end{array} \]
Ferrers Boards & Full Rook Placements

A Ferrers Board F is an $n \times n$ array of unit squares with a “bite” taken out of the N.E. section.

For example

\[D_F \]
Ferrers Boards & Full Rook Placements

A Ferrers Board F is an $n \times n$ array of unit squares with a “bite” taken out of the N.E. section.

For example

\[D_F \]

Definition

A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.
Ferrers Boards & Full Rook Placements

A Ferrers Board F is an $n \times n$ array of unit squares with a “bite” taken out of the N.E. section.

For example

![Ferrers Board Diagram]

Definition

A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.
Ferrers Boards & Full Rook Placements

A Ferrers Board F is an $n \times n$ array of unit squares with a “bite” taken out of the N.E. section.

For example

```
D_F

×
×
×
×
```

Definition
A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.

Notation

- \mathcal{F}_n is the set of all Ferrers boards that admit a f.r.p. of n rooks.
Ferrers Boards & Full Rook Placements

A Ferrers Board F is an $n \times n$ array of unit squares with a “bite” taken out of the N.E. section.

For example

![Diagram of a Ferrers Board]

Definition

A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.

Notation

- \mathcal{F}_n is the set of all Ferrers boards that admit a f.r.p. of n rooks.
- \mathcal{R}_F is the set of all f.r.p on $F \in \mathcal{F}_n$ and

\[
\mathcal{R}_n := \bigcup_{F \in \mathcal{F}_n} \mathcal{R}_F.
\]
Pattern Avoidance in Rook Placements

Definition
We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle inside F the “permutation” in this rectangle avoids σ in the classical sense.
Pattern Avoidance in Rook Placements

Definition
We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle inside F the “permutation” in this rectangle avoids σ in the classical sense.

For example,

```
  × × ×
  ×   ×
  ×   ×
  ×   ×
  ×   ×
```

avoids 132 but does NOT avoid 312. (Important: Read using cartesian coordinates!!)
Pattern Avoidance in Rook Placements

Definition
We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle inside F the “permutation” in this rectangle avoids σ in the classical sense.

For example,

\begin{center}
\begin{tikzpicture}
\draw (0,0) grid (5,5);
\draw[red] (1,2) -- (3,4);
\draw[red] (2,3) -- (4,5);
\draw[red] (3,4) -- (4,5);
\end{tikzpicture}
\end{center}

avoids 132 but does NOT avoid 312. (Important: Read using cartesian coordinates!!)
Pattern Avoidance in Rook Placements

Definition
We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle inside F the “permutation” in this rectangle avoids σ in the classical sense.

For example,

 avoids 132 but does NOT avoid 312. (Important: Read using cartesian coordinates!!)
Pattern Avoidance in Rook Placements

Definition
We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle inside F the “permutation” in this rectangle avoids σ in the classical sense.

For example, avoids 132 but does NOT avoid 312. (Important: Read using cartesian coordinates!!)

Notation

- $\mathcal{R}_F(\sigma)$ is the set of all rook placements on $F \in \mathcal{F}_n$ that avoid σ and

$$\mathcal{R}_n(\sigma) := \bigcup_{F \in \mathcal{F}_n} \mathcal{R}_F(\sigma).$$
Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.
Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History (k=3)

- $231 \sim 312$, $123 \sim 321 \sim 213$, 132
Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History ($k=3$)

- $231 \sim 312$, $123 \sim 321 \sim 213$, 132
 - J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino
Definition

We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History ($k=3$)

- $231 \sim 312$, $123 \sim 321 \sim 213$, 132
 - J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

- $|\mathcal{R}_n(123)| = |\mathcal{D}_n^2| = |\mathcal{R}_n(213)|$
 - W. Chen, E. Deng, R. Du, R. Stanley and C. Yan
Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History (k=3)

- $231 \sim 312, \ 123 \sim 321 \sim 213, \ 132$
 - J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

- $|\mathcal{R}_n(123)| = |\mathcal{D}^2_n| = |\mathcal{R}_n(213)|$
 - W. Chen, E. Deng, R. Du, R. Stanley and C. Yan
 - V. Jelínek (Complicated: 4+ pages)
Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History ($k=3$)

- $231 \sim 312, \ 123 \sim 321 \sim 213, \ 132$
 - J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

- $|\mathcal{R}_n(123)| = |\mathcal{D}_n^2| = |\mathcal{R}_n(213)|$
 - W. Chen, E. Deng, R. Du, R. Stanley and C. Yan
 - V. Jelínek (Complicated: 4+ pages)
 - J. Bloom, S. Elizalde.
Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History ($k=3$)

- $231 \sim 312, \ 123 \sim 321 \sim 213, \ 132$
 - J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

- $|\mathcal{R}_n(123)| = |\mathcal{D}_n^2| = |\mathcal{R}_n(213)|$
 - W. Chen, E. Deng, R. Du, R. Stanley and C. Yan
 - V. Jelínek (Complicated: 4+ pages)
 - J. Bloom, S. Elizalde.

- $|\mathcal{R}_n(231)| \leq |\mathcal{R}_n(123)| \leq |\mathcal{R}_n(132)|$
 - Z. Stankova
What is Still Needed....

(Open) Problems:

1 Simple proof that $|\mathcal{R}_n(231)| = |D_n^2|$.

- M. Bousquet-Mélou and G. Xin did the "123" case.
We will show 1, 2 & the "231" case of 4. In addition, we will use:

- Give a new proof counting $|S_n(2314)| = |S_n(1342)|$.
- Analyze the shape-Wilf-equivalence for pairs of patterns with length 3.
What is Still Needed....

(Open) Problems:

1. Simple proof that $|\mathcal{R}_n(231)| = |\mathcal{D}_n^2|$.
2. Enumeration of $\mathcal{R}_n(231)$.

- M. Bousquet-Mélou and G. Xin did the "123" case.
We will show 1, 2 & the "231" case of 4. In addition, we will use
• Give a new proof counting $|\mathcal{S}_n(2314)| = |\mathcal{S}_n(1342)|$.
• Analyze the shape-Wilf-equivalence for pairs of patterns with
length 3.
What is Still Needed....

(Open) Problems:

1. Simple proof that $|R_n(231)| = |D_n^2|$.
2. Enumeration of $R_n(231)$.
3. Enumeration of $R_n(132)$.
What is Still Needed....

(Open) Problems:

1. Simple proof that $|R_n(231)| = |D_n^2|$.
2. Enumeration of $R_n(231)$.
3. Enumeration of $R_n(132)$.
4. Enumeration of the “231” and “132” classes for set partition.

- M. Bousquet-Mélou and G. Xin did the “123” case.
- We will show 1, 2 & the “231” case of 4. In addition, we will use our methods to
 • Give a new proof counting $|S_n(2314)| = |S_n(1342)|$.
 • Analyze the shape-Wilf-equivalence for pairs of patterns with length 3.
What is Still Needed....

(Open) Problems:

1 Simple proof that \(|R_n(231)| = |D^2_n|\).
2 Enumeration of \(R_n(231)\).
3 Enumeration of \(R_n(132)\).
4 Enumeration of the “231” and “132” classes for set partition.
 - M. Bousquet-Mélou and G. Xin did the “123” case.
(Open) Problems:

1. Simple proof that $|\mathcal{R}_n(231)| = |D_n^2|$.
2. Enumeration of $\mathcal{R}_n(231)$.
3. Enumeration of $\mathcal{R}_n(132)$.
4. Enumeration of the “231” and “132” classes for set partition.
 - M. Bousquet-Mélou and G. Xin did the “123” case.

We will show 1, 2 & the “231” case of 4. In addition, we will use our methods to

- Give a new proof counting

$$|S_n(2314)| = |S_n(1342)|.$$
What is Still Needed....

(Open) Problems:

1. Simple proof that $|R_n(231)| = |D^2_n|$.
2. Enumeration of $R_n(231)$.
3. Enumeration of $R_n(132)$.
4. Enumeration of the “231” and “132” classes for set partition.
 - M. Bousquet-Mélo and G. Xin did the “123” case.

We will show 1, 2 & the “231” case of 4. In addition, we will use our methods to

• Give a new proof counting

 \[|S_n(2314)| = |S_n(1342)|. \]

• Analyze the shape-Wilf-equivalence for pairs of patterns with length 3.
A Simple Proof that $|R_n(213)| = |D_n^2|$.

Notation

Let D_n be the set of Dyck paths with semilength n.

Proof by example:
A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}_n^2|$.

Notation

Let \mathcal{D}_n be the set of Dyck paths with semilength n.

Lemma

$F \in \mathcal{F}_n$ iff $D_F \in \mathcal{D}_n$. Therefore \mathcal{F}_n and \mathcal{D}_n are in bijection!
A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}_n^2|$.

Notation

Let \mathcal{D}_n be the set of Dyck paths with semilength n.

Lemma

$F \in \mathcal{F}_n$ iff $D_F \in \mathcal{D}_n$. Therefore \mathcal{F}_n and \mathcal{D}_n are in bijection!

Proof by example:

Dyck Path!!
A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}^2_n|$.

Theorem (J. Bloom, S. Elizalde)

There exists an explicit (and painfully simple!) bijection

$$\mathcal{R}_n(213) \rightarrow \mathcal{D}^2_n.$$
A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}_n^2|$.

Theorem (J. Bloom, S. Elizalde)

There exists an explicit (and painfully simple!) bijection

$$\mathcal{R}_n(213) \rightarrow \mathcal{D}_n^2.$$

Observe that $54132 \in \mathcal{S}(213)$ results from the standard bijection $\mathcal{S}(213) \rightarrow \mathcal{D}_n^2$.

\begin{tikzpicture}

 \begin{scope}[every node/.style={draw,minimum size=5mm}]
 \draw (-.5,-.5) grid (4.5,4.5);
 \node (a) at (0,0) {\times};
 \node (b) at (1,1) {\times};
 \node (c) at (2,2) {\times};
 \node (d) at (3,3) {\times};
 \node (e) at (4,4) {\times};
 \end{scope}
\end{tikzpicture}
A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}^2_n|$.

Theorem (J. Bloom, S. Elizalde)

There exists an explicit (and painfully simple!) bijection

$$\mathcal{R}_n(213) \rightarrow \mathcal{D}^2_n.$$

![Diagram showing the bijection between $\mathcal{R}_n(213)$ and \mathcal{D}^2_n.](image)
A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}^2_n|$.

Theorem (J. Bloom, S. Elizalde)

There exists an explicit (and painfully simple!) bijection

\[\mathcal{R}_n(213) \rightarrow \mathcal{D}^2_n.\]
A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}_n^2|$.

Theorem (J. Bloom, S. Elizalde)

There exists an explicit (and painfully simple!) bijection

$$\mathcal{R}_n(213) \rightarrow \mathcal{D}_n^2.$$
A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}_n^2|$.

Theorem (J. Bloom, S. Elizalde)

There exists an explicit (and painfully simple!) bijection

$$\mathcal{R}_n(213) \rightarrow \mathcal{D}_n^2.$$

- Observe that $54132 \in S(213)$
 - Blue path results from the standard bijection $S(213) \rightarrow \mathcal{D}_n$.
The Enumeratation of $R_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in F_n$. There exists an (simple) explicit bijection

$$\Pi : R_F(231) \rightarrow L_F,$$

where L_F is a set of “special” labelings of the border of F.
The Enumeratation of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \rightarrow \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:
The Enumeration of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \to \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:
The Enumeration of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \to \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:
The Enumeratation of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \rightarrow \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:
The Enumeratation of $R_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : R_F(231) \rightarrow L_F,$$

where L_F is a set of “special” labelings of the border of F.

An example:

```
  0 1 1 1
  X
  X
  X
  X
  X
  X
  X
```
The Enumeratation of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \rightarrow \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:
The Enumeratation of $R_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : R_F(231) \rightarrow L_F,$$

where L_F is a set of “special” labelings of the border of F.

An example:
The Enumeratation of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \to \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:
The Enumeratation of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \to \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:

Critical Properties:

• Monotone Property - Increase ≤ 1 over east step.
• Decrease ≤ 1 over south step.
• Zero Condition - Zero labels are those on the diagonal.
• Diagonal Property - For any diagonal: “Top” \leq “Bottom”.

Diagram:

```
0 1 1 1
× 1 2
   × 2
   ×× 1
   ×× 1
   2
   2
   1
   1
   2
   0
```
The Enumeratation of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \to \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:

Critical Properties:

- **Monotone Property**
 - Increase ≤ 1 over east step.
 - Decrease ≤ 1 over south step.
The Enumeration of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \rightarrow \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:

Critical Properties:

- **Monotone Property**
 - Increase ≤ 1 over east step.
 - Decrease ≤ 1 over south step.

- **Zero Condition**
 - Zero labels are those on the diagonal.
The Enumeratation of $\mathcal{R}_n(231)$

Theorem (J. Bloom, D. Saracino)

Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

$$\Pi : \mathcal{R}_F(231) \to \mathcal{L}_F,$$

where \mathcal{L}_F is a set of “special” labelings of the border of F.

An example:

Critical Properties:

- **Monotone Property**
 - Increase ≤ 1 over east step.
 - Decrease ≤ 1 over south step.

- **Zero Condition**
 - Zero labels are those on the diagonal.

- **Diagonal Property**
 - For any diagonal: “Top” \leq “Bottom”.
Theorem (J. Bloom, S. Elizalde)

\[
\sum_{n \geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n \geq 0} |\mathcal{L}_n| z^n = \frac{54z}{1 + 36z - (1 - 12z)^{3/2}},
\]

where \(\mathcal{L}_n \coloneqq \bigcup_{F \in \mathcal{F}_n} \mathcal{L}_F\). Further, we obtain

\[
|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.
\]
Theorem (J. Bloom, S. Elizalde)

\[
\sum_{n \geq 0} |R_n(231)| z^n = \sum_{n \geq 0} |L_n| z^n = \frac{54z}{1 + 36z - (1 - 12z)^{3/2}},
\]

where \(L_n := \bigcup_{F \in \mathcal{F}_n} L_F \). Further, we obtain

\[
|R_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi} n^5} 12^n.
\]

Idea behind the proof:

- Tweaking the standard decompositions for Dyck paths we get a functional equation.
Theorem (J. Bloom, S. Elizalde)

\[\sum_{n \geq 0} |R_n(231)| z^n = \sum_{n \geq 0} |L_n| z^n = \frac{54z}{1 + 36z - (1 - 12z)^{3/2}}, \]

where \(L_n := \bigcup_{F \in \mathcal{F}_n} L_F \). Further, we obtain

\[|R_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi} n^5} 12^n. \]

Idea behind the proof:

- Tweaking the standard decompositions for Dyck paths we get a functional equation.
- We solve this functional equation using the quadratic method developed by Tutte for counting rooted planar maps.
Theorem (J. Bloom, S. Elizalde)

\[
\sum_{n \geq 0} |R_n(231)|z^n = \sum_{n \geq 0} |L_n|z^n = \frac{54z}{1 + 36z - (1 - 12z)^{3/2}},
\]

where \(L_n := \bigcup_{F \in \mathcal{F}_n} L_F\). Further, we obtain

\[
|R_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi} n^5} 12^n.
\]

Idea behind the proof:

- Tweaking the standard decompositions for Dyck paths we get a functional equation.
- We solve this functional equation using the \textit{quadratic method} developed by Tutte for counting rooted planar maps.
- Interestingly, labelings that have only the Monotone Property and the Diagonal Property are in bijection with rooted planar maps!!
The pattern 2314

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a minimal Ferrers board.
The pattern 2314

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a minimal Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

\[
\begin{array}{cccccccc}
\times & & & & & & & \\
& \times & & & & & & \\
& & \times & & & & & \\
& & & \times & & & & \\
& & & & \times & & & \\
& & & & & \times & & \\
& & & & & & \times & \\
& & & & & & & \times
\end{array}
\]
The pattern 2314

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a **minimal** Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

- This f.r.p. is in $\mathcal{R}_7(231)$.
The pattern 2314

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a minimal Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

```
      0 1
     × 0 1 2
    × × 1 2
   × × × 1 2
  × × × × 2
 × × × × × 2
× × × × × × 1
× × × × × × × 0
```

• This f.r.p. is in $\mathcal{R}_7(231)$.
The pattern 2314

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a minimal Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

```
   0 1
  × 0 1 2
  ×     1 2
  ×     1 2
  ×  2  2
  ×     2
  ×     1
  ×     0
```

- This f.r.p. is in $\mathcal{R}_7(231)$.
- The labels rounding any peak are always $a, a+1, a$. Call this the peak property.
The pattern 2314

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a minimal Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

```
  0 1
  × 0 1 2
  × 1 2
  × 1 2 2 3
  ×
  ×
  ×
  ×
```

- This f.r.p. is in $R_7(231)$.
- The labels rounding any peak are always $a, a+1, a$. Call this the peak property.

Notation

- Let $\mathcal{L}_n^\times \subset \mathcal{L}_n$ be all labelings with the peak property.
The pattern 2314

Lemma (J. Bloom, S. Elizalde)

This composition of maps gives a bijection

\[S_n(2314) \rightarrow \mathcal{L}_n^\times(231), \]

and therefore

\[\sum_{n \geq 0} |S_n(2314)|z^n = \sum_{n \geq 0} |\mathcal{L}_n^\times|z^n. \]
The pattern 2314

Lemma (J. Bloom, S. Elizalde)

This composition of maps gives a bijection

\[S_n(2314) \rightarrow \mathcal{L}_n^\times(231), \]

and therefore

\[\sum_{n \geq 0} |S_n(2314)|z^n = \sum_{n \geq 0} |\mathcal{L}_n^\times|z^n. \]

- To count \(\mathcal{L}_n^\times \) is simply a matter of “tweaking” the method used to count \(\mathcal{L}_n \).
The pattern 2314

Lemma (J. Bloom, S. Elizalde)

This composition of maps gives a bijection

\[S_n(2314) \to L_n^\times(231), \]

and therefore

\[\sum_{n \geq 0} |S_n(2314)|z^n = \sum_{n \geq 0} |L_n^\times|z^n. \]

• To count \(L_n^\times \) is simply a matter of “tweaking” the method used to count \(L_n \).

Doing so we obtain

\[\sum_{n \geq 0} |S_n(2314)|z^n = \frac{32z}{1 + 20z - 8z^2 - (1 - 8z)^{3/2}}. \]
Matchings & Set Partitions

A *perfect matching* M is a graph such that every vertex is “matched” with another vertex.

For example,

```
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
```

Notation

- M_n is the set of all matchings on $2n$ vertices.
- P_n is the set of all set partitions on n vertices.
Matchings & Set Partitions

A *perfect matching* M is a graph such that every vertex is “matched” with another vertex.

For example,

A set partition may also be represented by a graph.

For example

{\{1\}, \{2, 5\}, \{3, 7\}, \{4, 12\}, \{6, 8, 11\}, \{9\}, \{10\}}

becomes

![Graph representation of set partition](image-url)
Matchings & Set Partitions

A *perfect matching* M is a graph such that every vertex is "matched" with another vertex.

For example,

$$\begin{align*}
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\end{align*}$$

A set partition may also be represented by a graph.

For example

$$\begin{align*}
\{\{1\}, \{2, 5\}, \{3, 7\}, \{4, 12\}, \{6, 8, 11\}, \{9\}, \{10\}\}
\end{align*}$$

becomes

$$\begin{align*}
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\end{align*}$$

Notation

- \mathcal{M}_n is set of all matchings on $2n$ vertices.
- \mathcal{P}_n is set of all set partitions on n vertices.
Patterns in Matchings and Set Partitions

In this context, a pattern is a certain configuration of arcs. For example consider:

- **3-crossing**
- **3-nesting**

Both contain a 3-crossing and both avoid a 3-nesting.
Patterns in Matchings and Set Partitions

In this context, a pattern is a certain configuration of arcs. For example consider:

- 3-crossing
- 3-nesting

Now consider our examples:

- Both contain a 3-crossing and both avoid a 3-nesting.
Patterns in Matchings and Set Partitions

In this context, a pattern is a certain configuration of arcs. For example consider:

- 3-crossing
- 3-nesting

Now consider our examples:

- Both contain a 3-crossing and both avoid a 3-nesting.
Patterns in Matchings and Set Partitions

In this context, a pattern is a certain configuration of arcs. For example consider:

- 3-crossing
- 3-nesting

Now consider our examples:

- Both contain a 3-crossing and both avoid a 3-nesting.

Notation

If τ is a configuration let...

- $\mathcal{M}_n(\tau)$ be matchings on $2n$ vertices that avoid τ.
- $\mathcal{P}_n(\tau)$ be set partitions of $[n]$ that avoid τ.
The mapping (due to C. Krattenthaler) \(\kappa : M_n \rightarrow R^\times_n \) is a bijection.

This will permit us to translate between matchings and f.r.p.
The mapping (due to C. Krattenthaler) $\kappa: M_n \rightarrow R_n$ is a bijection. This will permit us to translate between matchings and f.r.p.
The mapping (due to C. Krattenthaler) $\kappa: M_n \rightarrow R_n$ is a bijection. This will permit us to translate between matchings and f.r.p.
The mapping (due to C. Krattenthaler) $\kappa: M \nrightarrow R$ is a bijection.

This will permit us to translate between matchings and full rook placements.
The mapping (due to C. Krattenthaler) \(\kappa : M_n \rightarrow R_n \) is a bijection. This will permit us to translate between matchings and f.r.p.
Matchings & Full Rook Placements

The mapping (due to C. Krattenthaler) $\kappa: \mathcal{M}_n \rightarrow \mathcal{R}_n$ is a bijection. This will permit us to translate between matchings and f.r.p.
The mapping (due to C. Krattenthaler) \(\kappa : M_n \to R_n \) is a bijection. This will permit us to translate between matchings and full rook placements.
The mapping (due to C. Krattenthaler) \(\kappa : M_n \to R_n \) is a bijection. This will permit us to translate between matchings and f.r.p.
The mapping (due to C. Krattenthaler) \(\kappa: \mathcal{M}_n \to \mathcal{R}_n \) is a bijection.

This will permit us to translate between matchings and f.r.p.
The mapping (due to C. Krattenthaler) \(\kappa : M_n \rightarrow R_n \) is a bijection. This will permit us to translate between matchings and f.r.p.
The mapping (due to C. Krattenthaler) \(\kappa \): \(M_n \to R^n \) is a bijection. This will permit us to translate between matchings and f.r.p.
The mapping (due to C. Krattenthaler) \(\kappa : M_n \to R_n \) is a bijection.

★ This will permit us to translate between matchings and f.r.p.
Matchings & Partitions that avoid 231

In particular, \(\kappa : \mathcal{M}_n(231) \rightarrow \mathcal{M}_n(\tau) \) where \(\tau \) is the configuration:

\[
\begin{array}{c}
\text{\[231\]} \\
\end{array}
\]
Matchings & Partitions that avoid 231

In particular, $\kappa : M_n(231) \rightarrow M_n(\tau)$ where τ is the configuration:

\[
\begin{array}{c}
\text{
} \\
\end{array}
\]

In light of this the following notation makes sense...

Notation

- $M_n(231)$ is the set of all matchings that avoid τ.
- $P_n(231)$ is the set of all set partitions that avoid τ.

\[\star\] The other patterns of length 3 correspond to "nice" configuration of 3 arcs as well.
For example,
- $123 \mapsto 3$-nesting.
- $321 \mapsto 3$-crossing.
Matchings & Partitions that avoid 231

In particular, \(\kappa : \mathcal{M}_n(231) \to \mathcal{M}_n(\tau) \) where \(\tau \) is the configuration:

\[
\begin{array}{c}
\text{---}
\end{array}
\]

In light of this the following notation makes sense...

Notation

- \(\mathcal{M}_n(231) \) is the set of all matchings that avoid \(\tau \).
- \(\mathcal{P}_n(231) \) is the set of all set partitions that avoid \(\tau \).

The other patterns of length 3 correspond to “nice” configuration of 3 arcs as well. For example,
- \(123 \mapsto 3\)-nesting.
- \(321 \mapsto 3\)-crossing.
Matchings & Partitions that avoid 231

Definition
In a matching M a valley is the occurrence of a “closer” followed by an “opener”, i.e.,

\[n \longrightarrow n+1 \]
Matchings & Partitions that avoid 231

Definition
In a matching M a valley is the occurrence of a “closer” followed by an “opener”, i.e.,

![Diagram of a valley in a matching](image)

Lemma (J. Bloom, S. Elizalde)
Let τ be any configuration. Then, given

$$A(v, z) = \sum_{n \geq 0} \sum_{M \in \mathcal{M}_n(\tau)} v^{\text{val}(M)} z^n$$

we have

$$\sum_{n \geq 0} |\mathcal{P}_n(\tau)| z^n = \frac{1}{1 - z} A\left(\frac{1}{z}, \frac{z^2}{(1 - z)^2}\right)$$
Matchings & Partitions that avoid 231

To obtain $\sum |\mathcal{P}_n(231)|z^n$ it will suffice to have $\sum_{\mathcal{M}_n(231)} v^{\text{val}(M)} z^n$.
Matchings & Partitions that avoid 231

To obtain $\sum |\mathcal{P}_n(231)| z^n$ it will suffice to have $\sum_\mathcal{M}_n(231) v^{\text{val}(M)} z^n$.

\[\begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array} \]

\[\begin{array}{c}
\times & \times & \times & \times \\
\times & \times & \times \\
\times & \times \\
\end{array} \]

κ

\[\begin{array}{c}
0 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 \\
2 & 1 \\
0 \\
\end{array} \]

Π
To obtain $\sum |\mathcal{P}_n(231)| z^n$ it will suffice to have $\sum_{\mathcal{M}_n(231)} v^{\text{val}(M)} z^n$.

Translating to generating functions:

$$\sum_{\mathcal{M}_n(231)} v^{\text{val}(M)} z^n = \sum_{\mathcal{R}_n(231)} v^{\text{val}(F)} z^n = \sum_{\mathcal{L}_n(231)} v^{\text{val}(D)} z^n.$$
Matchings & Partitions that avoid 231

To obtain $\sum |P_n(231)|z^n$ it will suffice to have $\sum_{M_n(231)} v^{\text{val}(M)} z^n$.

Translating to generating functions:

$$\sum_{M_n(231)} v^{\text{val}(M)} z^n = \sum R_n(231) v^{\text{val}(F)} z^n = \sum L_n(231) v^{\text{val}(D)} z^n.$$
Matchings & Partitions that avoid 231

To obtain $\sum |P_n(231)| z^n$ it will suffice to have $\sum M_{n}(231)^{\text{val}(M)} z^n$.

Translating to generating functions:

$$\sum M_{n}(231)^{\text{val}(M)} z^n = \sum R_{n}(231)^{\text{val}(F)} z^n = \sum L_{n}(231)^{\text{val}(D)} z^n$$
Matchings & Partitions that avoid 231

To obtain \(\sum |\mathcal{P}_n(231)|z^n \) it will suffice to have \(\sum_{\mathcal{M}_n(231)} v^{\text{val}(M)}z^n \).

Translating to generating functions:

\[
\sum_{\mathcal{M}_n(231)} v^{\text{val}(M)}z^n = \sum_{\mathcal{R}_n(231)} v^{\text{val}(F)}z^n = \sum_{\mathcal{L}_n} v^{\text{val}(D)}z^n
\]
Theorem (J. Bloom, S. Elizalde)

The generating function $\sum_{n\geq 0} |P_n(231)|z^n$ is a root of the cubic polynomial

$$(z - 1)(5z^2 - 2z + 1)^2X^3$$

$$+ (-9z^5 + 54z^4 - 85z^3 + 59z^2 - 14z + 3)X^2$$

$$+ (-9z^4 + 60z^3 - 64z^2 + 13z - 3)X + (-9z^3 + 23z^2 - 4z + 1).$$

The asymptotic behavior of its coefficients is given by

$$|P_n(312)| \sim \delta n^{-5/2} \rho^n,$$

where $\delta \approx 0.061518$ and

$$\rho = \frac{3(9 + 6\sqrt{3})^{1/3}}{2 + 2(9 + 6\sqrt{3})^{1/3} - (9 + 6\sqrt{3})^{2/3}} \approx 6.97685.$$
Shape-Wilf-Equivalent Pairs

I
\{123, 213\} \sim \{132, 213\} \sim \{132, 231\} \sim \{132, 312\} \sim \{213, 231\} \sim \{213, 312\} \sim \{231, 312\} \sim \{231, 321\} \sim \{312, 321\}

II
\{123, 231\}

III
\{123, 312\}

IV
\{123, 321\}

V
\{213, 321\}

VI
\{123, 132\}

VII
\{132, 321\}

Class

Matchings

IV
\frac{1}{1 - 5z + 2z^2 - 10z^3 + 32z^4 - 37z^5 + 12z^6} \left(1 - z \left(1 - 10z - 31z^2 + 30z^3 + z^4\right)\right)

V
\text{Unknown}

VI & VII
\text{Unknown}
Shape-Wilf-Equivalent Pairs

<table>
<thead>
<tr>
<th>Class</th>
<th>Shape-Wilf Equivalent Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>{123, 213} ∼ {132, 213} ∼ {132, 231} ∼ {123, 312} ∼ {213, 231} ∼ {213, 312} ∼ {231, 321} ∼ {312, 321}</td>
</tr>
<tr>
<td>II</td>
<td>{123, 231}</td>
</tr>
<tr>
<td>III</td>
<td>{123, 312}</td>
</tr>
<tr>
<td>IV</td>
<td>{123, 321}</td>
</tr>
<tr>
<td>V</td>
<td>{213, 321}</td>
</tr>
<tr>
<td>VI</td>
<td>{123, 132}</td>
</tr>
<tr>
<td>VII</td>
<td>{132, 321}</td>
</tr>
</tbody>
</table>
Shape-Wilf-Equivalent Pairs

<table>
<thead>
<tr>
<th>Class</th>
<th>Shape-Wilf Equivalent Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>{123, 213} ∼ {132, 213} ∼ {132, 231} ∼ {132, 312} ∼ {213, 231} ∼ {213, 312} ∼ {231, 312} ∼ {231, 321} ∼ {312, 321}</td>
</tr>
<tr>
<td>II</td>
<td>{123, 231}</td>
</tr>
<tr>
<td>III</td>
<td>{123, 312}</td>
</tr>
<tr>
<td>IV</td>
<td>{123, 321}</td>
</tr>
<tr>
<td>V</td>
<td>{213, 321}</td>
</tr>
<tr>
<td>VI</td>
<td>{123, 132}</td>
</tr>
<tr>
<td>VII</td>
<td>{132, 321}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Matchings</th>
<th>Set partitions</th>
</tr>
</thead>
</table>
| I | \[
\frac{4}{3 + \sqrt{1 - 8z}}
\]
| | \[
\frac{2 - 3z + z^2 - z\sqrt{1 - 6z + z^2}}{2(1 - 3z + 3z^2)}
\] | |
| II & III | Solution of a cubic | Solution of a cubic |
| IV | \[
\frac{1 - 5z + 2z^2}{1 - 6z + 5z^2}
\]
| | \[
\frac{1 - 10z + 32z^2 - 37z^3 + 12z^4}{(1 - z)(1 - 10z + 31z^2 - 30z^3 + z^4)}
\] | |
| V | Solution of a functional equation | Unknown |
| VI & VII | Unknown | Unknown |