
Pattern Avoidance in Ferrers Boards
and

Set Partitions

Jonathan Bloom
(Joint work with Sergi Elizalde & Dan Saracino)

Dartmouth College

February, 2013



Ferrers Boards & Full Rook Placements
A Ferrers Board F is an n × n array of unit squares with a “bite”
taken out of the N.E. section.

For example

×
×

×

×
×

DF

Definition
A full rook placement (f.r.p.) on F is a way of placing n rooks in F
such that no two are in the same row or column.

Notation

• Fn is the set of all Ferrers boards that admit a f.r.p. of n
rooks.

• RF is the set of all f.r.p on F ∈ Fn and

Rn :=
⋃

F∈Fn

RF .
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Pattern Avoidance in Rook Placements

Definition
We say a f.r.p. on F ∈ Fn avoids some pattern σ ∈ Sk if the
following happens. For any rectangle inside F the “permutation”
in this rectangle avoids σ in the classical sense.

For example,

×
×

×

×
×

avoids 132 but does NOT avoid 312. (Important: Read using
cartesian coordinates!!)

Notation

• RF (σ) is the set of all rook placements on F ∈ Fn that avoid
σ and

Rn(σ) :=
⋃

F∈Fn

RF (σ).
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Definition
We say two patterns σ, τ ∈ Sk are shape-Wilf-equivalent if for any
Ferrers board F ∈ Fn

|RF (σ)| = |RF (τ)|.

In this case we write σ ∼ τ .

History (k=3)

• 231 ∼ 312, 123 ∼ 321 ∼ 213, 132

- J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V.
Jeĺınek, J. Bloom, D. Saracino

• |Rn(123)| = |D2
n| = |Rn(213)|

- W. Chen, E. Deng, R. Du, R. Stanley and C. Yan
- V. Jeĺınek (Complicated: 4+ pages)
- J. Bloom, S. Elizalde.

• |RF (231)| ≤ |RF (123)| ≤ |RF (132)|
- Z. Stankova
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- V. Jeĺınek (Complicated: 4+ pages)
- J. Bloom, S. Elizalde.

• |RF (231)| ≤ |RF (123)| ≤ |RF (132)|
- Z. Stankova



Definition
We say two patterns σ, τ ∈ Sk are shape-Wilf-equivalent if for any
Ferrers board F ∈ Fn

|RF (σ)| = |RF (τ)|.

In this case we write σ ∼ τ .

History (k=3)

• 231 ∼ 312, 123 ∼ 321 ∼ 213, 132

- J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V.
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What is Still Needed....

(Open) Problems:

1 Simple proof that |Rn(231)| = |D2
n|.

2 Enumeration of Rn(231).

3 Enumeration of Rn(132).

4 Enumeration of the “231” and “132” classes for set partition.

- M. Bousquet-Mélou and G. Xin did the “123” case.

We will show 1, 2 & the “231” case of 4. In addition, we will use
our methods to

• Give a new proof counting

|Sn(2314)| = |Sn(1342)|.

• Analyze the shape-Wilf-equivalence for pairs of patterns with
length 3.
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A Simple Proof that |Rn(213)| = |D2
n|.

Notation
Let Dn be the set of Dyck paths with semilength n.

Lemma
F ∈ Fn iff DF ∈ Dn. Therefore Fn and Dn are in bijection!

Proof by example:

×
×

×

×
×

Dyck Path!!
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A Simple Proof that |Rn(213)| = |D2
n|.

Theorem (J. Bloom, S. Elizalde)

There exists an explicit (and painfully simple!) bijection

Rn(213)→ D2
n.

×

×

×

×

×

• Observe that 54132 ∈ S(213)

- Blue path results from the standard bijection S(213)→ Dn.
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The Enumeratation of Rn(231)

Theorem (J. Bloom, D. Saracino)

Let F ∈ Fn. There exists an (simple) explicit bijection

Π : RF (231)→ LF ,

where LF is a set of “special” labelings of the border of F .

An example:

×
×

×
×

×
×

0 1 1 1

1
2

2
1 1 2

2

1

0

Critical Properties:
• Monotone Property

- Increase ≤ 1 over east step.
- Decrease ≤ 1 over south step.

• Zero Condition

- Zero labels are those on the diagonal.

• Diagonal Property

- For any diagonal: “Top” ≤ “Bottom”.
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Theorem (J. Bloom, S. Elizalde)

∑
n≥0
|Rn(231)|zn =

∑
n≥0
|Ln|zn =

54z

1 + 36z − (1− 12z)3/2
,

where Ln :=
⋃

F∈Fn
LF . Further, we obtain

|Rn(231)| ∼ 33

25
√
πn5

12n.

Idea behind the proof:

• Tweaking the standard decompositions for Dyck paths we get
a functional equation.

• We solve this functional equation using the quadratic method
developed by Tutte for counting rooted planar maps.

? Interestingly, labelings that have only the Monotone Property
and the Diagonal Property are in bijection with rooted planar
maps!!
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The pattern 2314
Any π ∈ Sn(2314) may be thought of as a full rook placement on a
minimal Ferrers board.

For example, π = 7165324 ∈ S7(2314) maps to

×

×

×

×

×

×

×

0 1

0 1 2

1 2

1 2 2 3

2

2

1

0

• This f.r.p. is in R7(231).
• The labels rounding any peak are always a, a + 1, a. Call this

the peak property.

Notation

• Let L×n ⊂ Ln be all labelings with the peak property.



The pattern 2314
Any π ∈ Sn(2314) may be thought of as a full rook placement on a
minimal Ferrers board.

For example, π = 7165324 ∈ S7(2314) maps to

×

×

×

×

×

×

×

0 1

0 1 2

1 2

1 2 2 3

2

2

1

0

• This f.r.p. is in R7(231).
• The labels rounding any peak are always a, a + 1, a. Call this

the peak property.

Notation

• Let L×n ⊂ Ln be all labelings with the peak property.



The pattern 2314
Any π ∈ Sn(2314) may be thought of as a full rook placement on a
minimal Ferrers board.

For example, π = 7165324 ∈ S7(2314) maps to

×

×

×

×

×

×

×

0 1

0 1 2

1 2

1 2 2 3

2

2

1

0

• This f.r.p. is in R7(231).

• The labels rounding any peak are always a, a + 1, a. Call this
the peak property.

Notation

• Let L×n ⊂ Ln be all labelings with the peak property.



The pattern 2314
Any π ∈ Sn(2314) may be thought of as a full rook placement on a
minimal Ferrers board.

For example, π = 7165324 ∈ S7(2314) maps to

×

×

×

×

×

×

×

0 1

0 1 2

1 2

1 2 2 3

2

2

1

0

• This f.r.p. is in R7(231).

• The labels rounding any peak are always a, a + 1, a. Call this
the peak property.

Notation

• Let L×n ⊂ Ln be all labelings with the peak property.



The pattern 2314
Any π ∈ Sn(2314) may be thought of as a full rook placement on a
minimal Ferrers board.

For example, π = 7165324 ∈ S7(2314) maps to

×

×

×

×

×

×

×

0 1

0 1 2

1 2

1 2 2 3

2

2

1

0

• This f.r.p. is in R7(231).
• The labels rounding any peak are always a, a + 1, a. Call this

the peak property.

Notation

• Let L×n ⊂ Ln be all labelings with the peak property.



The pattern 2314
Any π ∈ Sn(2314) may be thought of as a full rook placement on a
minimal Ferrers board.

For example, π = 7165324 ∈ S7(2314) maps to

×

×

×

×

×

×

×

0 1

0 1 2

1 2

1 2 2 3

2

2

1

0

• This f.r.p. is in R7(231).
• The labels rounding any peak are always a, a + 1, a. Call this

the peak property.

Notation

• Let L×n ⊂ Ln be all labelings with the peak property.



The pattern 2314

Lemma (J. Bloom, S. Elizalde)

This composition of maps gives a bijection

Sn(2314)→ L×n (231),

and therefore ∑
n≥0
|Sn(2314)|zn =

∑
n≥0
|L×n |zn.

• To count L×n is simply a matter of “tweaking” the method
used to count Ln.

Doing so we obtain∑
n≥0
|Sn(2314)|zn =

32z

1 + 20z − 8z2 − (1− 8z)3/2
.
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Matchings & Set Partitions
A perfect matching M is graph such that every vertex is
“matched” with another vertex.

For example,

1 2 3 4 5 6 7 8 9 10

A set partition may also be represented by a graph.

For example

{{1}, {2, 5}, {3, 7}, {4, 12}, {6, 8, 11}, {9}, {10}}
becomes

1 2 3 4 5 6 7 8 9 10 11 12

Notation

• Mn is set of all matchings on 2n vertices.

• Pn is set of all set partitions on n vertices.
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Patterns in Matchings and Set Partitions
In this context, a pattern is a certain configuration of arcs. For
example consider:

3-crossing 3-nesting

Now consider our examples:

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12

? Both contain a 3-crossing and both avoid a 3-nesting.

Notation
If τ is a configuration let...

• Mn(τ) be matchings on 2n vertices that avoid τ .

• Pn(τ) be set partitions of [n] that avoid τ .
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Matchings & Full Rook Placements

1 2 3 4 5 6 7 8 9 10

κ

×

×

×

×

×

×

×

1 2 3

4 5

6

7 8

9

10

The mapping (due to C. Krattenthaler) κ :Mn → Rn is a
bijection.

? This will permit us to translate between matchings and f.r.p.
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Matchings & Partitions that avoid 231

In particular, κ :Mn(231)→Mn(τ) where τ is the configuration:

In light of this the following notation makes sense...

Notation

• Mn(231) is the set of all matchings that avoid τ .

• Pn(231) is the set of all set partitions that avoid τ .

? The other patterns of length 3 correspond to “nice”
configuration of 3 arcs as well.
For example,

- 123 7→ 3-nesting.
- 321 7→ 3-crossing.
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Matchings & Partitions that avoid 231

Definition
In a matching M a valley is the occurrence of a “closer” followed
by an “opener”, i.e.,

n n+1

Lemma (J. Bloom, S. Elizalde)

Let τ be any configuration. Then, given

A(v , z) =
∑
n≥0

∑
M∈Mn(τ)

v val(M)zn

we have ∑
n≥0
|Pn(τ)|zn =

1

1− z
A

(
1

z
,

z2

(1− z)2

)
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Matchings & Partitions that avoid 231

To obtain
∑
|Pn(231)|zn it will suffice to have

∑
Mn(231)

v val(M)zn.

1 2 3 4 5 6 7 8 9 10

κ
×

×

×

×

×

Π

0 1 1 1

1 2

2
1

2

1

0

Translating to generating functions:∑
Mn(231)

v val(M)zn =
∑
Rn(231)

v val(F )zn =
∑
Ln

v val(D)zn
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Theorem (J. Bloom, S. Elizalde)

The generating function
∑

n≥0 |Pn(231)|zn is a root of the cubic
polynomial

(z − 1)(5z2 − 2z + 1)2X 3

+ (−9z5 + 54z4 − 85z3 + 59z2 − 14z + 3)X 2

+ (−9z4 + 60z3 − 64z2 + 13z − 3)X + (−9z3 + 23z2 − 4z + 1).

The asymptotic behavior of its coefficients is given by

|Pn(312)| ∼ δn−5/2 ρn,

where δ ≈ 0.061518 and

ρ =
3(9 + 6

√
3)1/3

2 + 2(9 + 6
√

3)1/3 − (9 + 6
√

3)2/3
≈ 6.97685.



Shape-Wilf-Equivalent Pairs

Class Shape-Wilf Equivalent Pairs

I
{123, 213} ∼ {132, 213} ∼ {132, 231} ∼ {132, 312} ∼ {213, 231}

∼ {213, 312} ∼ {231, 312} ∼ {231, 321} ∼ {312, 321}
II {123, 231}
III {123, 312}
IV {123, 321}
V {213, 321}
VI {123, 132}
VII {132, 321}

Class Matchings Set partitions

I
4

3 +
√
1− 8z

2− 3z + z2 − z
√
1− 6z + z2

2(1− 3z + 3z2)

II & III Solution of a cubic Solution of a cubic

IV
1− 5z + 2z2

1− 6z + 5z2
1− 10z + 32z2 − 37z3 + 12z4

(1− z)(1− 10z + 31z2 − 30z3 + z4)

V
Solution of a

Unknown
functional equation

VI & VII Unknown Unknown
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