Pattern Avoidance in Ferrers Boards and Set Partitions

Jonathan Bloom (Joint work with Sergi Elizalde & Dan Saracino)

Dartmouth College

February, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A *Ferrers Board* F is an $n \times n$ array of unit squares with a "bite" taken out of the N.E. section.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A *Ferrers Board* F is an $n \times n$ array of unit squares with a "bite" taken out of the N.E. section.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

For example

A *Ferrers Board* F is an $n \times n$ array of unit squares with a "bite" taken out of the N.E. section.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

For example

A *Ferrers Board* F is an $n \times n$ array of unit squares with a "bite" taken out of the N.E. section.

For example

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A *Ferrers Board* F is an $n \times n$ array of unit squares with a "bite" taken out of the N.E. section.

For example

Definition

A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.

A *Ferrers Board* F is an $n \times n$ array of unit squares with a "bite" taken out of the N.E. section.

For example

Definition

A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.

A *Ferrers Board* F is an $n \times n$ array of unit squares with a "bite" taken out of the N.E. section.

For example

Definition

A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.

Notation

• \mathcal{F}_n is the set of all Ferrers boards that admit a f.r.p. of n rooks.

A *Ferrers Board* F is an $n \times n$ array of unit squares with a "bite" taken out of the N.E. section.

For example

Definition

A full rook placement (f.r.p.) on F is a way of placing n rooks in F such that no two are in the same row or column.

Notation

- \mathcal{F}_n is the set of all Ferrers boards that admit a f.r.p. of n rooks.
- \mathcal{R}_F is the set of all f.r.p on $F \in \mathcal{F}_n$ and

$$\mathcal{R}_n := \bigcup_{F \in \mathcal{F}_n} \mathcal{R}_F.$$

Definition

We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle **inside** F the "permutation" in this rectangle avoids σ in the classical sense.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle **inside** F the "permutation" in this rectangle avoids σ in the classical sense.

For example,

avoids 132 but does NOT avoid 312. (**Important**: Read using cartesian coordinates!!)

Definition

We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle **inside** F the "permutation" in this rectangle avoids σ in the classical sense.

For example,

avoids 132 but does NOT avoid 312. (**Important**: Read using cartesian coordinates!!)

Definition

We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle **inside** F the "permutation" in this rectangle avoids σ in the classical sense.

For example,

avoids 132 but does NOT avoid 312. (**Important**: Read using cartesian coordinates!!)

Definition

We say a f.r.p. on $F \in \mathcal{F}_n$ avoids some pattern $\sigma \in S_k$ if the following happens. For any rectangle **inside** F the "permutation" in this rectangle avoids σ in the classical sense.

For example,

avoids 132 but does NOT avoid 312. (Important: Read using cartesian coordinates!!)

Notation

• $\mathcal{R}_F(\sigma)$ is the set of all rook placements on $F \in \mathcal{F}_n$ that avoid σ and

$$\mathcal{R}_n(\sigma) := \bigcup_{F \in \mathcal{F}_n} \mathcal{R}_F(\sigma).$$

We say two patterns $\sigma, \tau \in S_k$ are *shape-Wilf-equivalent* if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_{F}(\sigma)| = |\mathcal{R}_{F}(\tau)|.$$

In this case we write $\sigma \sim \tau$.

We say two patterns $\sigma, \tau \in S_k$ are *shape-Wilf-equivalent* if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_{F}(\sigma)| = |\mathcal{R}_{F}(\tau)|.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In this case we write $\sigma \sim \tau$.

History (k=3)

• $231 \sim 312$, $123 \sim 321 \sim 213$, 132

We say two patterns $\sigma, \tau \in S_k$ are *shape-Wilf-equivalent* if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_{F}(\sigma)| = |\mathcal{R}_{F}(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History (k=3)

- $231 \sim 312$, $123 \sim 321 \sim 213$, 132
 - J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

We say two patterns $\sigma, \tau \in S_k$ are *shape-Wilf-equivalent* if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_{F}(\sigma)| = |\mathcal{R}_{F}(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History (k=3)

231 ~ 312, 123 ~ 321 ~ 213, 132
J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

•
$$|\mathcal{R}_n(123)| = |\mathcal{D}_n^2| = |\mathcal{R}_n(213)|$$

- W. Chen, E. Deng, R. Du, R. Stanley and C. Yan

We say two patterns $\sigma, \tau \in S_k$ are *shape-Wilf-equivalent* if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_{F}(\sigma)| = |\mathcal{R}_{F}(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History (k=3)

231 ~ 312, 123 ~ 321 ~ 213, 132
 J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

We say two patterns $\sigma, \tau \in S_k$ are *shape-Wilf-equivalent* if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_{F}(\sigma)| = |\mathcal{R}_{F}(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History (k=3)

231 ~ 312, 123 ~ 321 ~ 213, 132
J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

We say two patterns $\sigma, \tau \in S_k$ are *shape-Wilf-equivalent* if for any Ferrers board $F \in \mathcal{F}_n$

$$|\mathcal{R}_{F}(\sigma)| = |\mathcal{R}_{F}(\tau)|.$$

In this case we write $\sigma \sim \tau$.

History (k=3)

231 ~ 312, 123 ~ 321 ~ 213, 132
J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V. Jelínek, J. Bloom, D. Saracino

(Open) Problems:

1 Simple proof that $|\mathcal{R}_n(231)| = |\mathcal{D}_n^2|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(Open) Problems:

1 Simple proof that $|\mathcal{R}_n(231)| = |\mathcal{D}_n^2|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 Enumeration of $\mathcal{R}_n(231)$.

(Open) Problems:

1 Simple proof that $|\mathcal{R}_n(231)| = |\mathcal{D}_n^2|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2 Enumeration of $\mathcal{R}_n(231)$.
- 3 Enumeration of $\mathcal{R}_n(132)$.

(Open) Problems:

- 1 Simple proof that $|\mathcal{R}_n(231)| = |\mathcal{D}_n^2|$.
- 2 Enumeration of $\mathcal{R}_n(231)$.
- 3 Enumeration of $\mathcal{R}_n(132)$.
- 4 Enumeration of the "231" and "132" classes for set partition.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Open) Problems:

- 1 Simple proof that $|\mathcal{R}_n(231)| = |\mathcal{D}_n^2|$.
- 2 Enumeration of $\mathcal{R}_n(231)$.
- 3 Enumeration of $\mathcal{R}_n(132)$.
- 4 Enumeration of the "231" and "132" classes for set partition.

- M. Bousquet-Mélou and G. Xin did the "123" case.

(Open) Problems:

- 1 Simple proof that $|\mathcal{R}_n(231)| = |\mathcal{D}_n^2|$.
- 2 Enumeration of $\mathcal{R}_n(231)$.
- 3 Enumeration of $\mathcal{R}_n(132)$.
- 4 Enumeration of the "231" and "132" classes for set partition.
 - M. Bousquet-Mélou and G. Xin did the "123" case.

We will show 1, 2 & the "231" case of 4. In addition, we will use our methods to

• Give a new proof counting

$$|S_n(2314)| = |S_n(1342)|.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Open) Problems:

- 1 Simple proof that $|\mathcal{R}_n(231)| = |\mathcal{D}_n^2|$.
- 2 Enumeration of $\mathcal{R}_n(231)$.
- 3 Enumeration of $\mathcal{R}_n(132)$.
- 4 Enumeration of the "231" and "132" classes for set partition.
 - M. Bousquet-Mélou and G. Xin did the "123" case.

We will show 1, 2 & the "231" case of 4. In addition, we will use our methods to

• Give a new proof counting

$$|S_n(2314)| = |S_n(1342)|.$$

• Analyze the shape-Wilf-equivalence for pairs of patterns with length 3.

Notation

Let \mathcal{D}_n be the set of Dyck paths with semilength n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation

Let \mathcal{D}_n be the set of Dyck paths with semilength n.

Lemma

 $F \in \mathcal{F}_n$ iff $D_F \in \mathcal{D}_n$. Therefore \mathcal{F}_n and \mathcal{D}_n are in bijection!

Notation

Let \mathcal{D}_n be the set of Dyck paths with semilength n.

Lemma

 $F \in \mathcal{F}_n$ iff $D_F \in \mathcal{D}_n$. Therefore \mathcal{F}_n and \mathcal{D}_n are in bijection!

Proof by example:

Theorem (J. Bloom, S. Elizalde) There exists an explicit (and painfully simple!) bijection

 $\mathcal{R}_n(213) \rightarrow \mathcal{D}_n^2.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (J. Bloom, S. Elizalde) There exists an explicit (and painfully simple!) bijection

 $\mathcal{R}_n(213) \rightarrow \mathcal{D}_n^2.$

Theorem (J. Bloom, S. Elizalde) There exists an explicit (and painfully simple!) bijection

 $\mathcal{R}_n(213) \rightarrow \mathcal{D}_n^2.$

Theorem (J. Bloom, S. Elizalde) There exists an explicit (and painfully simple!) bijection

 $\mathcal{R}_n(213) \rightarrow \mathcal{D}_n^2$.

Theorem (J. Bloom, S. Elizalde) There exists an explicit (and painfully simple!) bijection

 $\mathcal{R}_n(213) \rightarrow \mathcal{D}_n^2.$

A Simple Proof that $|\mathcal{R}_n(213)| = |\mathcal{D}_n^2|$.

Theorem (J. Bloom, S. Elizalde) There exists an explicit (and painfully simple!) bijection

 $\mathcal{R}_n(213) \to \mathcal{D}_n^2.$

- Observe that $54132 \in S(213)$
 - Blue path results from the standard bijection $S(213) \rightarrow D_n$.

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

where \mathcal{L}_F is a set of "special" labelings of the border of F. An example:

Critical Properties:

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

where \mathcal{L}_F is a set of "special" labelings of the border of F. An example:

Critical Properties:

- Monotone Property
 - Increase ≤ 1 over east step.
 - Decrease ≤ 1 over south step.

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

where \mathcal{L}_F is a set of "special" labelings of the border of F. An example:

Critical Properties:

- Monotone Property
 - Increase ≤ 1 over east step.
 - Decrease ≤ 1 over south step.
- Zero Condition
 - Zero labels are those on the diagonal.

Theorem (J. Bloom, D. Saracino) Let $F \in \mathcal{F}_n$. There exists an (simple) explicit bijection

 $\Pi: \mathcal{R}_F(231) \to \mathcal{L}_F,$

where \mathcal{L}_F is a set of "special" labelings of the border of F. An example:

Critical Properties:

- Monotone Property
 - Increase ≤ 1 over east step.
 - Decrease ≤ 1 over south step.
- Zero Condition
 - Zero labels are those on the diagonal.
- Diagonal Property
 - For any diagonal: "Top" \leq "Bottom".

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}},$$

where $\mathcal{L}_n := \bigcup_{F \in \mathcal{F}_n} \mathcal{L}_F$. Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}},$$

where $\mathcal{L}_n := \bigcup_{F \in \mathcal{F}_n} \mathcal{L}_F$. Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

Idea behind the proof:

• Tweaking the standard decompositions for Dyck paths we get a functional equation.

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}},$$

where $\mathcal{L}_n := \bigcup_{F \in \mathcal{F}_n} \mathcal{L}_F.$ Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

Idea behind the proof:

- Tweaking the standard decompositions for Dyck paths we get a functional equation.
- We solve this functional equation using the *quadratic method* developed by Tutte for counting rooted planar maps.

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}},$$

where $\mathcal{L}_n := \bigcup_{F \in \mathcal{F}_n} \mathcal{L}_F.$ Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

Idea behind the proof:

- Tweaking the standard decompositions for Dyck paths we get a functional equation.
- We solve this functional equation using the *quadratic method* developed by Tutte for counting rooted planar maps.
- * Interestingly, labelings that have only the Monotone Property and the Diagonal Property are in bijection with rooted planar maps!!

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a **minimal** Ferrers board.

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a **minimal** Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a **minimal** Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• This f.r.p. is in $\mathcal{R}_7(231)$.

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a **minimal** Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• This f.r.p. is in $\mathcal{R}_7(231)$.

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a **minimal** Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

- This f.r.p. is in $\mathcal{R}_7(231)$.
- The labels rounding any peak are always *a*, *a* + 1, *a*. Call this the *peak property*.

Any $\pi \in S_n(2314)$ may be thought of as a full rook placement on a **minimal** Ferrers board.

For example, $\pi = 7165324 \in S_7(2314)$ maps to

- This f.r.p. is in $\mathcal{R}_7(231)$.
- The labels rounding any peak are always *a*, *a* + 1, *a*. Call this the *peak property*.

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで

Notation

• Let $\mathcal{L}_n^{\times} \subset \mathcal{L}_n$ be all labelings with the peak property.

Lemma (J. Bloom, S. Elizalde)

This composition of maps gives a bijection

```
S_n(2314) \rightarrow \mathcal{L}_n^{\times}(231),
```

and therefore

$$\sum_{n\geq 0} |S_n(2314)| z^n = \sum_{n\geq 0} |\mathcal{L}_n^{\times}| z^n.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma (J. Bloom, S. Elizalde)

This composition of maps gives a bijection

 $S_n(2314) \rightarrow \mathcal{L}_n^{\times}(231),$

and therefore

$$\sum_{n\geq 0}|S_n(2314)|z^n=\sum_{n\geq 0}|\mathcal{L}_n^{\times}|z^n.$$

 To count L[×]_n is simply a matter of "tweaking" the method used to count L_n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma (J. Bloom, S. Elizalde)

This composition of maps gives a bijection

 $S_n(2314) \rightarrow \mathcal{L}_n^{\times}(231),$

and therefore

$$\sum_{n\geq 0}|S_n(2314)|z^n=\sum_{n\geq 0}|\mathcal{L}_n^{\times}|z^n.$$

 To count L[×]_n is simply a matter of "tweaking" the method used to count L_n.

Doing so we obtain

$$\sum_{n\geq 0} |S_n(2314)| z^n = \frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

Matchings & Set Partitions

A *perfect matching* M is graph such that every vertex is "matched" with another vertex.

For example,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Matchings & Set Partitions

A *perfect matching* M is graph such that every vertex is "matched" with another vertex.

For example,

A set partition may also be represented by a graph. For example

 $\{\{1\},\{2,5\},\{3,7\},\{4,12\},\{6,8,11\},\{9\},\{10\}\}$

becomes

Matchings & Set Partitions

A *perfect matching* M is graph such that every vertex is "matched" with another vertex.

For example,

A set partition may also be represented by a graph. For example

 $\{\{1\},\{2,5\},\{3,7\},\{4,12\},\{6,8,11\},\{9\},\{10\}\}$

becomes

< ∃ →

3

Notation

- \mathcal{M}_n is set of all matchings on 2n vertices.
- \mathcal{P}_n is set of all set partitions on n vertices.

In this context, a pattern is a certain configuration of arcs. For example consider:

3-crossing

3-nesting

 $\star\,$ Both contain a 3-crossing and both avoid a 3-nesting.

In this context, a pattern is a certain configuration of arcs. For example consider:

 \star Both contain a 3-crossing and both avoid a 3-nesting.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

In this context, a pattern is a certain configuration of arcs. For example consider:

 \star Both contain a 3-crossing and both avoid a 3-nesting.

イロト 不得 トイヨト イヨト

э

In this context, a pattern is a certain configuration of arcs. For example consider:

* Both contain a 3-crossing and both avoid a 3-nesting.

Notation

If τ is a configuration let...

• $\mathcal{M}_n(\tau)$ be matchings on 2n vertices that avoid τ .

э

• $\mathcal{P}_n(\tau)$ be set partitions of [n] that avoid τ .

Matchings & Full Rook Placements

Matchings & Full Rook Placements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 2 3

The mapping (due to C. Krattenthaler) $\kappa : \mathcal{M}_n \to \mathcal{R}_n$ is a bijection.

* This will permit us to translate between matchings and f.r.p.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In particular, $\kappa : \mathcal{M}_n(231) \to \mathcal{M}_n(\tau)$ where τ is the configuration:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In particular, $\kappa : \mathcal{M}_n(231) \to \mathcal{M}_n(\tau)$ where τ is the configuration:

In light of this the following notation makes sense...

Notation

- $\mathcal{M}_n(231)$ is the set of all matchings that avoid τ .
- $\mathcal{P}_n(231)$ is the set of all set partitions that avoid τ .

In particular, $\kappa : \mathcal{M}_n(231) \to \mathcal{M}_n(\tau)$ where τ is the configuration:

In light of this the following notation makes sense...

Notation

- $\mathcal{M}_n(231)$ is the set of all matchings that avoid τ .
- $\mathcal{P}_n(231)$ is the set of all set partitions that avoid τ .
- The other patterns of length 3 correspond to "nice" configuration of 3 arcs as well. For example,

- $123 \mapsto 3$ -nesting.
- $321 \mapsto 3$ -crossing.

Definition

In a matching M a *valley* is the occurrence of a "closer" followed by an "opener", i.e.,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

In a matching M a *valley* is the occurrence of a "closer" followed by an "opener", i.e.,

Lemma (J. Bloom, S. Elizalde) Let τ be **any** configuration. Then, given

$$A(v,z) = \sum_{n \ge 0} \sum_{M \in \mathcal{M}_n(\tau)} v^{\mathsf{val}(M)} z^n$$

we have

$$\sum_{n\geq 0} |\mathcal{P}_n(\tau)| z^n = \frac{1}{1-z} A\left(\frac{1}{z}, \frac{z^2}{(1-z)^2}\right)$$

To obtain
$$\sum |\mathcal{P}_n(231)| z^n$$
 it will suffice to have $\sum_{\mathcal{M}_n(231)} v^{\operatorname{val}(\mathcal{M})} z^n$.

<□ > < @ > < E > < E > E のQ @

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Translating to generating functions:

$$\sum_{\mathcal{M}_n(231)} v^{\mathsf{val}(\mathcal{M})} z^n = \sum_{\mathcal{R}_n(231)} v^{\mathsf{val}(F)} z^n = \sum_{\mathcal{L}_n} v^{\mathsf{val}(D)} z^n$$

Theorem (J. Bloom, S. Elizalde)

The generating function $\sum_{n\geq 0} |\mathcal{P}_n(231)| z^n$ is a root of the cubic polynomial

$$\begin{aligned} &(z-1)(5z^2-2z+1)^2X^3\\ &+(-9z^5+54z^4-85z^3+59z^2-14z+3)X^2\\ &+(-9z^4+60z^3-64z^2+13z-3)X+(-9z^3+23z^2-4z+1).\end{aligned}$$

The asymptotic behavior of its coefficients is given by

$$|\mathcal{P}_n(312)| \sim \delta n^{-5/2} \rho^n,$$

where $\delta \approx 0.061518$ and

$$\rho = \frac{3(9+6\sqrt{3})^{1/3}}{2+2(9+6\sqrt{3})^{1/3}-(9+6\sqrt{3})^{2/3}} \approx 6.97685.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Shape-Wilf-Equivalent Pairs

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - - - の Q ()

Shape-Wilf-Equivalent Pairs

Class	Shape-Wilf Equivalent Pairs		
Ι	$ \{123, 213\} \sim \{132, 213\} \sim \{132, 231\} \sim \{132, 312\} \sim \{213, 231\} \\ \sim \{213, 312\} \sim \{231, 312\} \sim \{231, 321\} \sim \{312, 321\} $		
11	{123,231}		
	{123, 312}		
IV	{123, 321}		
V	{213, 321}		
VI	{123, 132}		
VII	{132, 321}		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Shape-Wilf-Equivalent Pairs

Class	Shape-Wilf Equivalent Pairs		
I	$ \{123, 213\} \sim \{132, 213\} \sim \{132, 231\} \sim \{132, 312\} \sim \{213, 231\} $		
	\sim {213, 312} \sim {231, 312} \sim {231, 321} \sim {312, 321}		
11	{123, 231}		
	{123, 312}		
IV	{123, 321}		
V	{213, 321}		
VI	{123, 132}		
VII	{132, 321}		

Class	Matchings	Set partitions
I	$\frac{4}{3+\sqrt{1-8z}}$	$\frac{2-3z+z^2-z\sqrt{1-6z+z^2}}{2(1-3z+3z^2)}$
&	Solution of a cubic	Solution of a cubic
IV	$\frac{1 - 5z + 2z^2}{1 - 6z + 5z^2}$	$\frac{1-10z+32z^2-37z^3+12z^4}{(1-z)(1-10z+31z^2-30z^3+z^4)}$
V	Solution of a functional equation	Unknown
VI & VII	Unknown	Unknown

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで