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Definition
A full rook placement (f.r.p.) on F is a way of placing n rooks in F
such that no two are in the same row or column.

Notation
e F, is the set of all Ferrers boards that admit a f.r.p. of n

rooks.
e R is the set of all f.r.p on F € F,, and

Rn = U 7—\’,[:.
FeF,
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Pattern Avoidance in Rook Placements
Definition
We say a f.r.p. on F € F,, avoids some pattern o € S if the

following happens. For any rectangle inside F the “permutation”
in this rectangle avoids o in the classical sense.

For example,

x[ 1]

avoids 132 but does NOT avoid 312. (Important: Read using
cartesian coordinates!!)

Notation

e Rp(o) is the set of all rook placements on F € F,, that avoid
o and

Ra(o) == | Re(0).

FeF,
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Definition
We say two patterns o, 7 € Sy are shape-Wilf-equivalent if for any
Ferrers board F € F,

REe(o)| = [RE(T)].
In this case we write o ~ 7.
History (k=3)

e 231 ~ 312, 123 ~ 321 ~ 213, 132

- J. Backelin, J. West, G. Xin, Z. Stankova, C. Krattenthaler, V.
Jelinek, J. Bloom, D. Saracino

* [Rn(123)] = |Dj| = [Rn(213)]
- W. Chen, E. Deng, R. Du, R. Stanley and C. Yan
- V. Jelinek (Complicated: 4+ pages)
- J. Bloom, S. Elizalde.

° \RF(231)] < |RF(123)\ < \RF(132)]
- Z. Stankova
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What is Still Needed....

(Open) Problems:
1 Simple proof that |R,(231)| = |D?|.
2 Enumeration of R,(231).

3 Enumeration of R,(132).

4 Enumeration of the “231" and “132" classes for set partition.
- M. Bousquet-Mélou and G. Xin did the “123" case.

We will show 1, 2 & the “231" case of 4. In addition, we will use
our methods to

e Give a new proof counting

|Sn(2314)| = |S,(1342)].

e Analyze the shape-Wilf-equivalence for pairs of patterns with
length 3.
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A Simple Proof that |R,(213)| = |D2|.

Notation
Let D, be the set of Dyck paths with semilength n.

Lemma
F € F, iff Dr € D,. Therefore F,, and D, are in bijection!

Proof by example:

Dyck Path!!
—
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A Simple Proof that |R,(213)| = |D2|.

Theorem (J. Bloom, S. Elizalde)
There exists an explicit (and painfully simple!) bijection

Rn(213) — D2

e Observe that 54132 € 5(213)
- Blue path results from the standard bijection $(213) — D,.
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Theorem (J. Bloom, D. Saracino)

Let F € F,. There exists an (simple) explicit bijection
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where Lr is a set of “special” labelings of the border of F.

An example:
Critical Properties:
0 1 1 1 e Monotone Property
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The Enumeratation of R,(231)

Theorem (J. Bloom, D. Saracino)

Let F € F,. There exists an (simple) explicit bijection
M:Re(231) — Lr,

where Lr is a set of “special” labelings of the border of F.

An example:
D11 Critical Properties:
0 e Monotone Property
X 1 5 - Increase < 1 over east step.
X - Decrease < 1 over south step.
i L o e Zero Condition
N - Zero labels are those on the diagonal.
2 e Diagonal Property
x 1 - For any diagonal: “Top” < “Bottom”.
X
0
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Theorem (J. Bloom, S. Elizalde)

S Ra(231))27 = 3 |£0) 2" = >4z

- _ _ 3/27
s >0 14 36z (1 12z)/

where L, = UFefn Lr. Further, we obtain

33
"R,,(231)| ~ 12",
25v/mn®

Idea behind the proof:

e Tweaking the standard decompositions for Dyck paths we get
a functional equation.

e We solve this functional equation using the quadratic method
developed by Tutte for counting rooted planar maps.

* Interestingly, labelings that have only the Monotone Property
and the Diagonal Property are in bijection with rooted planar
maps!!
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The pattern 2314

Any 7 € 5,(2314) may be thought of as a full rook placement on a
minimal Ferrers board.

For example, m = 7165324 € 57(2314) maps to

0 1

X0 1 2

X (1 2

X112 2 3

o = NN

e This f.r.p. is in R7(231).
e The labels rounding any peak are always a,a+ 1, a. Call this
the peak property.

Notation

o Let L) C L, be all labelings with the peak property.
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The pattern 2314
Lemma (J. Bloom, S. Elizalde)

This composition of maps gives a bijection
Sn(2314) — £(231),

and therefore

D " [Sa(2314)|2" =) " |LF|2".

n>0 n>0
e To count L) is simply a matter of “tweaking” the method
used to count L.

Doing so we obtain

> " [Sn(2314)|2"

n>0

_ 32z
1420z 822 — (1 —8z2)3/2°
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Matchings & Set Partitions

A perfect matching M is graph such that every vertex is
“matched” with another vertex.

e NN

1 2 3 4 5 6 7 8 9 10

For example,

A set partition may also be represented by a graph.

For example

{{1},{2,5},{3,7},{4,12},{6,8,11}, {9}, {10}}

becomes
. m
1 2 3 4 5 6 7 8 9 10 11 12
Notation

e M, is set of all matchings on 2n vertices.

e P, is set of all set partitions on n vertices.
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Patterns in Matchings and Set Partitions

In this context, a pattern is a certain configuration of arcs. For
example consider:

RN SN
3-crossing 3-nesting

Now consider our examples:

m m
1 2 3 4 5 6 7 8 9 10

9 10 11 12

* Both contain a 3-crossing and both avoid a 3-nesting.

Notation
If T is a configuration let...

e M,(7) be matchings on 2n vertices that avoid .

e P,(7) be set partitions of [n] that avoid .
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Matchings & Full Rook Placements

The mapping (due to C. Krattenthaler) k : M, — R, is a
bijection.

* This will permit us to translate between matchings and f.r.p.
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Matchings & Partitions that avoid 231

In particular, k : M,(231) — M,(7) where 7 is the configuration:

In light of this the following notation makes sense...

Notation

e M,(231) is the set of all matchings that avoid .
o P,(231) is the set of all set partitions that avoid 7.

* The other patterns of length 3 correspond to “nice”
configuration of 3 arcs as well.
For example,
- 123 — 3-nesting.
- 321 — 3-crossing.
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Matchings & Partitions that avoid 231

Definition
In a matching M a valley is the occurrence of a “closer” followed

by an “opener”, i.e.,

n n+1

Lemma (J. Bloom, S. Elizalde)

Let 7 be any configuration. Then, given

Z Z Sval(M)

n>0 MeM(r)

S - (o)

n>0

we have
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01 1 1
X 12

K X I
2
X 1
o« e 2
1 2 3 4 5 6 7 8 9 10 %
1
X




Matchings & Partitions that avoid 231

To obtain »  [P,(231)|2" it will suffice to have »  v*(M)z",
Mp(231)

0 1 1 1

2
< Y » 2
2
1 2 3 6 9 10 X
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To obtain »  [P,(231)|2" it will suffice to have »  v*(M)z",
Mp(231)

0 1 1 1

A %
N

< Y
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Matchings & Partitions that avoid 231

To obtain »  [P,(231)|2" it will suffice to have »  v*(M)z",

Ma(231)
001 1 1
X r\ 2
K x| I ,
X . m ,
1 2 3 6 9 10 A4 )
X

Translating to generating functions:

Z VvaI(M)Zn — Z VvaI(F)Zn — Z VvaI(D)Zn

M(231) Rn(231) Ly



Theorem (J. Bloom, S. Elizalde)

The generating function ) -, [Pn(231)|2" is a root of the cubic
polynomial

(z-1)(52° =2z + 1)°X3
+ (—92° + 54z* — 852% + 597° — 14z + 3)X?
+ (—9z* + 602° — 6422 + 13z — 3)X + (—923 + 232° — 4z + 1).

The asymptotic behavior of its coefficients is given by

1Pn(312)| ~ 6n~%/2 p",
where § ~ 0.061518 and

3(9 + 6v/3)Y/3

— ~ 6.97685.
2+2(9 +6v/3)1/3 — (9 + 6v/3)%/3

p
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Class Shape-Wilf Equivalent Pairs

| {123,213} ~ {132,213} ~ {132,231} ~ {132,312} ~ {213,231}
~ {213,312} ~ {231,312} ~ {231,321} ~ {312,321}

T {123,231}
1] {123,312}
v {123,321}
v {213,321}
Vi {123,132}

Vil {132,321}




Shape-Wilf-Equivalent Pairs

Class Shape-Wilf Equivalent Pairs
| {123,213} ~ {132,213} ~ {132,231} ~ {132,312} ~ {213,231}
~ {213,312} ~ {231,312} ~ {231,321} ~ {312,321}
T {123,231}
I {123,312}
Y {123,321}
Vv {213,321}
Vi {123,132}
VII {132,321}
’ Class H Matchings Set partitions
| 4 2—3z422—2/1—6z+ 22
3++41-8z 2(1 — 3z + 3z2)
& Il Solution of a cubic Solution of a cubic
v 1-5z+22° 1—10z + 3222 — 3723 + 12z*
1—6z+ 522 (1 —z)(1 — 10z + 3122 — 3023 + z*)
v Solution of a Unknown
functional equation
VI & VII Unknown Unknown




