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Part 1: (Pattern avoidance) We will:

1. Define the idea of shape-Wilf-equivalence

2. Discuss a new bijection Π related to shape-Wilf-equivalence

3. Look at the enumerative consequences of Π

Part 2: (Homomesy)

1. In Spring 2013, T. Roby spoke at here about the idea of
homomesy (formally called combinatorial ergodicity)

2. He stated a conjecture of Roby-Propp about homomesy,
rectangular Young tableaux, and promotion

3. Then we prove it!
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Part 1: Pattern Avoidance



Classical Pattern Avoidance

Definition
Let π ∈ Sn. We say π contains the pattern τ ∈ Sk if π has a
subsequence with the same relative ordering as τ .

I If π does not contain τ we say it avoids τ .

An example

I π contains the pattern 231 because of the subsequence 271.

Notation

I Denote by Sn(τ) the set of all π ∈ Sn that avoids τ .
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Classical Pattern Avoidance

Definition
We say two patterns τ and σ are Wilf-equivalent if

|Sn(τ)| = |Sn(σ)|

for all n. In this case we write τ ∼ σ.

Well Known Facts:
I All patterns τ of length 3 are Wilf-equivalent

I Moreover, |Sn(τ)| is the nth Catalan number!

I All patterns τ of length 4 are NOT Wilf-equivalent
I There are three equivalence classes

I No general method for determining Wilf-equivalence
I Finding one is the Holy Grail!
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Determining Wilf-equivalence

A partial method for determining Wilf-equivlance is due to Backlin,
West, and Xin

Theorem (Backlin-West-Xin ’01)

Let τ, σ ∈ Sk be patterns with a “special property” and ρ be any
permutation on the letters {(k + 1), . . . , (n + k)}. Then

τ · ρ ∼ σ · ρ

where · is juxtaposition.

This “special property” is called shape-Wilf-equivlance

I What is that?
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Defining shape-Wilf-equivalence

A Ferrers Board F is a square array of boxes with a “bite” taken
out of the northeast corner.

F =

×
×

×
×

×
×

A full rook placement (f.r.p.) on F is a placement markers (or
rooks) so that EXACTLY one is in each row and column.

Notation

1. RF = set of all f.r.p. on fixed board F

2. Rn = set of all f.r.p. with n rooks (different boards)
I Analogous to Sn
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Defining shape-Wilf-equivalence

Definition
A f.r.p. on F contains a pattern τ ∈ Sk if there is some rectangle
R that sits inside F so that rooks in R contain τ in the classical
sense.

I If not, we say it avoids the pattern τ

×
×

×
×

×
×

• Contains 312

• Avoids 231

Read using cartesian coordinates!

Notation

I RF (τ) = subset of RF that avoid τ

I Rn(τ) = subset of Rn that avoid τ

I Analogous to Sn(τ)
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Analog of Wilf-equivalence

Definition
We say two patterns σ, τ ∈ Sk are shape-Wilf-equivalent if

|RF (σ)| = |RF (τ)|,

for any Ferrers boards F . In this case we write σ ∼s τ .

Observe:

I shape-Wilf-equivalence → classical Wilf-equivalence.
I If F is n × n square board, then RF (τ) = Sn(τ).
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Patterns of Length 3
There are 3 shape-Wilf-equivalence classes:

231 ∼s 312 < 123 ∼s 321 ∼s 213 < 132

Past Work:

• 123 ∼s 321 ∼s 213
- Backelin-West-Xin ’01, Krattenthaler ’06, Jeĺınek ’07
- Enumerated by noncrossing Dyck paths

• 231 ∼s 312

- Original proofs: Stankova-West ’02, Jeĺınek ’07
- Previously NOT enumerated

• Relative ordering
- Stankova ’06

Our Work:

• New proof that 231 ∼s 312
- Previous proofs: nonbijective and complicated
- Our proof: bijective and (we think) simple
- Yields many enumerative results



Patterns of Length 3
There are 3 shape-Wilf-equivalence classes:

231 ∼s 312 < 123 ∼s 321 ∼s 213 < 132

Past Work:

• 123 ∼s 321 ∼s 213
- Backelin-West-Xin ’01, Krattenthaler ’06, Jeĺınek ’07
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- Previously NOT enumerated

• Relative ordering
- Stankova ’06

Our Work:

• New proof that 231 ∼s 312
- Previous proofs: nonbijective and complicated
- Our proof: bijective and (we think) simple
- Yields many enumerative results



Patterns of Length 3
There are 3 shape-Wilf-equivalence classes:

231 ∼s 312 < 123 ∼s 321 ∼s 213 < 132

Past Work:

• 123 ∼s 321 ∼s 213
- Backelin-West-Xin ’01, Krattenthaler ’06, Jeĺınek ’07
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Our Proof that 231 ∼s 312

I First, we define a bijection

Π : Rn(231)→ Ln(231)

where Ln(231) is a certain type of labeled Dyck paths

I Then, we define another bijection

Θ : Rn(312)→ Ln(312)

where Ln(312) is a another type of labeled Dyck paths

I Finally, we show that Ln(231)↔ Ln(312)
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Theorem (Bloom-Saracino ’11)

The mapping
Π : RF (231)→ LF (231)
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Θ : RF (312)→ LF (312),

is bijective. Here LF (312) = the set of labelings with the reverse
diagonal property:
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Enumerative Results

Theorem (Bloom-Elizalde ’13)

∑
n≥0

|Rn(231)|zn =
∑
n≥0

|Ln(231)|zn =
54z

1 + 36z − (1− 12z)3/2
.

Further, we obtain

|Rn(231)| ∼ 33

25
√
πn5

12n.
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In 1997 M. Bóna proved the following celebrated result:∑
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I His proof is not easy!

I A simpler proof was long sought

I We provide one using Π
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Enumerative Results: 2314−Avoiding Permutations
First, we view any π ∈ Sn(2314) as a f.r.p. on a minimal Ferrers
board.

For example,
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Observe
I This f.r.p. is in Rn(231)

I Apply Π!
I The resulting labels are characterized by the peak property

I Around a peak we have: a, a + 1, a.
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Enumerative Results: 2314−Avoiding Permutations

Lemma (Bloom-Elizalde ’13)

Our bijection Π : Rn(231)→ Ln(231) induces a bijection

Π× : Sn(2314)→ L×n (231),

where L×n (231) ⊂ Ln(231) with the peak property.

→ Counting L×n (231) is simply a matter of “tweaking” the
method used to count Ln(231).

Doing so we obtain Bóna’s result:∑
n≥0

|Sn(2314)|zn =
∑
n≥0

|L×n (312)|zn =
32z

1 + 20z − 8z2 − (1− 8z)3/2
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Enumerative Results

In June 2013, D. Callan proved that∑
n≥0

|Sn(2314, 1234)|zn =
1

1− zC (zC (z))
,

where C (z) is the generating function for the Catalan numbers.

He concludes his (12+ page) paper by saying:

“[My argument] works but is hardly intuitive...”

and then asking:

“Is there a better proof?”

The answer is YES!

I Using Π the proof is < 1 page.
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Part 2: Homomesy



What is Homomesy?

Definition

If we have

I X - a set of combinatorial objects

I G - a group acting on X

I f : X → R (a “statistic”),

then we say the triple (X ,G , f ) is homomesic if there is some
constant C such that

1

|O|
∑
x∈O

f (x) = C

where O is any orbit.
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Our Group Action: Promotion

Consider the mapping

T =

7→ 2 3 6 7

4 5 8 9
7→ 1 2 5 6

3 4 7 8
= P(T )

I This mapping is called promotion
I Originally defined by Shütezenberger
I Connected to jeu de taquin and RSK



Our Group Action: Promotion

Consider the mapping

T = 1 2 3 7

4 5 6 8

7→ 2 3 6 7

4 5 8 9
7→ 1 2 5 6

3 4 7 8
= P(T )

I This mapping is called promotion
I Originally defined by Shütezenberger
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Propp-Roby Conjecture

Consider the orbit of T under promotion:

1 2 3 7
4 5 6 8

7→ 1 2 5 6
3 4 7 8

7→ 1 3 4 5
2 6 7 8

7→ 1 2 3 4
5 6 7 8

Pick a box B

I Let B∗ be the corresponding box (under 180◦-rotation)

I The average value in these two boxes is:

(4 + 7) + (3 + 6) + (2 + 5) + (5 + 4)

4
=

36

4
= 8 + 1
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Propp-Roby Conjecture

Conjecture (Propp-Roby)

Let T be a rectangular Young Tableau with N boxes. If B is any
box and B∗ is its corresponding box (under 180◦-rotation) then
their average value over the orbit

T 7→ P(T ) 7→ P2(T ) 7→ · · ·

is always N + 1.



Propp-Roby Conjecture: A Closer Look

Again consider the orbit of T :

1 2 3 7

4 5 6 8
7→ 1 2 5 6

3 4 7 8
7→ 1 3 4 5

2 6 7 8
7→ 1 2 3 4

5 6 7 8

Observe the distributions in B and B∗:

Dist(B) = {7, 6, 5, 4}
Dist(B∗) = {4, 3, 2, 5}

8 + 1− Dist(B∗) = {9− 4, 9− 3, 9− 2, 9− 5}

= {5, 6, 7, 4} = Dist(B)
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Theorem (Bloom-Pechenik-Saracino)

Let T be a rectangular Young Tableau with N boxes. If B is any
box and B∗ is the corresponding box then

Dist(B) = N + 1− Dist(B∗)

over the orbit
T 7→ P(T ) 7→ P2(T ) 7→ · · · .

Observe: If we define T ∗ by

T = 1 2 3 7
4 5 6 8

180◦−−−→ 8 6 5 4
7 3 2 1

N+1−x−−−−−→ 1 3 4 5
2 6 7 8

= T ∗

then a (short) argument shows that our theorem is equivalent to:

DistT (B) = DistT∗(B)
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Growth Diagrams

Some KEY fact about growth diagram:

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

I The diagonals encode the orbit of T

I The anti-diagonals encode the orbit of T ∗

I The addition of a box B on level k means:
I Along a diagonal: k ∈ DistT (B)
I Along an anti-diagonal: k ∈ DistT∗(B)
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Our proof
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I Shade all partitions containing B
I This carves out a Dyck path
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I Down-step on level k ←→ k ∈ DistT (B)

I Every up-step on level k ←→ k ∈ DistT∗(B)
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Thank You!


