Modified Growth Diagrams and the BWX Map ϕ^*

Jonathan Bloom

Dartmouth College

Saint Michael’s College July, 2011
Permutations and Pattern Avoidance

Consider a permutation $\sigma \in S_n$ as a word in the alphabet $\{1, 2, 3, \ldots, n\}$.

For example we write $\sigma = 4 \ 5 \ 3 \ 1 \ 2$ for the permutation (in 2-line notation)

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 3 & 1 & 2
\end{pmatrix}
\]
Consider a permutation $\sigma \in S_n$ as a word in the alphabet $\{1, 2, 3, \ldots, n\}$.
Consider a permutation $\sigma \in S_n$ as a word in the alphabet \{1, 2, 3, \ldots, n\}.

For example we write

$$\sigma = 4\ 5\ 3\ 1\ 2$$

for the permutation (in 2-line notation)

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 3 & 1 & 2
\end{pmatrix}$$
We say a permutation $\sigma \in S_n$ contains a pattern $\tau \in S_k$ if σ contains a subsequence which is order-isomorphic to τ.

For example $\sigma = 4 \ 5 \ 3 \ 1 \ 2$ contains $\tau = 3 \ 2 \ 1$ but does not contain $\tau = 1 \ 2 \ 3$.

We write $S_n(\tau)$ for all permutations of length n which avoid τ.
Permutations and Pattern Avoidance

We say a permutation $\sigma \in S_n$ contains a pattern $\tau \in S_k$ if σ contains a subsequence which is order-isomorphic to τ. For example $\sigma = 4 \ 5 \ 3 \ 1 \ 2$ contains $\tau = 3 \ 2 \ 1$ but does not contain $\tau = 1 \ 2 \ 3$. We write $S_n(\tau)$ for all permutations of length n which avoid τ.
Permutations and Pattern Avoidance

We say a permutation \(\sigma \in S_n \) contains a pattern \(\tau \in S_k \) if \(\sigma \) contains a subsequence which is order-isomorphic to \(\tau \).

For example

\[
\sigma = 4 \ 5 \ 3 \ 1 \ 2 \ \text{contains} \ \tau = 3 \ 2 \ 1
\]

but does not contain \(\tau = 1 \ 2 \ 3 \).
Permutations and Pattern Avoidance

We say a permutation $\sigma \in S_n$ contains a pattern $\tau \in S_k$ if σ contains a subsequence which is order-isomorphic to τ.

For example

$$\sigma = 4 \ 5 \ 3 \ 1 \ 2 \text{ contains } \tau = 3 \ 2 \ 1$$

but does not contain $\tau = 1 \ 2 \ 3$.

We write $S_n(\tau)$ for all permutations of length n which avoid τ.
An important problem in pattern avoidance is to determine when $|S_n(τ)| = |S_n(ρ)|$ for all n. For two distinct patterns $τ$ and $ρ$, ▶ in this case we say $τ$ is Wilf-Equivalent to $ρ$.

A classic result in the field is that $|S_n(τ)| = C_n = \frac{1}{n+1} \binom{2n}{n}$ for all $τ \in S_3$.
An important problem in pattern avoidance is to determine when
\[|S_n(\tau)| = |S_n(\rho)| \]
for all \(n \). for two distinct patterns \(\tau \) and \(\rho \).
An important problem in pattern avoidance is to determine when

$$|S_n(\tau)| = |S_n(\rho)|$$

for all n. for two distinct patterns τ and ρ.

\Rightarrow In this case we say τ is Wilf-Equivalent to ρ.

A classic result in the field is that

$$|S_n(\tau)| = C_n = \frac{1}{n+1}(2^n)$$

for all $\tau \in S_3$.

An important problem in pattern avoidance is to determine when

$$|S_n(\tau)| = |S_n(\rho)|$$

for all n. for two distinct patterns τ and ρ.

- In this case we say τ is Wilf-Equivalent to ρ.

A classic result in the field is that

$$|S_n(\tau)| = C_n = \frac{1}{n+1} \binom{2n}{n}$$

for all $\tau \in S_3$.

Permutations and Pattern Avoidance
Another classic result due to Backelin, West, Xin (BWX) is:

$$S_n(12...k\rho) = S_n(k...1\rho)$$

for all n where ρ is a permutation of $\{k+1,...,k+l\}$.

An important tool in their proof is the map ϕ^*:

$$S_n \rightarrow S_n(k...1)$$

which is the focus of this talk.
Another classic result due to Backelin, West, Xin (BWX) is:

$$|S_n(12\ldots k\rho)| = |S_n(k\ldots 1\rho)| \text{ for all } n$$

where ρ is an permutation of $\{k + 1, \ldots, k + l\}$.
Another classic result due to Backelin, West, Xin (BWX) is:

$$|S_n(12\ldots k\rho)| = |S_n(k\ldots 1\rho)|$$ for all n

where ρ is an permutation of $\{k + 1, \ldots, k + l\}$.

An important tool in their proof is the map

$$\phi^* : S_n \to S_n(k\ldots 1)$$

which is the focus of this talk.
Definition of the BWX map ϕ^*

First we define the (intermediate) map

$$\phi : S_n \rightarrow S_n$$

which is implicitly dependent on some fixed $k > 2$.

Key Idea: ϕ removes the smallest $k \ldots 1$ pattern.
Definition of the BWX map ϕ^*

First we define the (intermediate) map

$$\phi : S_n \to S_n$$

which is implicitly dependent on some fixed $k > 2$.

For any $\sigma \in S_n$
Definition of the BWX map ϕ^*

First we define the (intermediate) map

$$\phi : S_n \rightarrow S_n$$

which is implicitly dependent on some fixed $k > 2$.

For any $\sigma \in S_n$

- Take the smallest $k \ldots 1$-pattern in σ and cycle these entries forward leaving all other fixed.
Definition of the BWX map ϕ^*

First we define the (intermediate) map

$$\phi : S_n \to S_n$$

which is implicitly dependent on some fixed $k > 2$.

For any $\sigma \in S_n$

- Take the smallest $k \ldots 1$-pattern in σ and cycle these entries forward leaving all other fixed.

For example if $k = 3$ and $\sigma = 4 \ 5 \ 3 \ 1 \ 2$ then

$$\phi(\sigma) = 3 \ 5 \ 1 \ 4 \ 2$$
Definition of the BWX map ϕ^*

First we define the (intermediate) map

$$\phi : S_n \rightarrow S_n$$

which is implicitly dependent on some fixed $k > 2$.

For any $\sigma \in S_n$

- Take the smallest $k \ldots 1$-pattern in σ and cycle these entries forward leaving all other fixed.

For example if $k = 3$ and $\sigma = 4 \ 5 \ 3 \ 1 \ 2$ then

$$\phi(\sigma) = 3 \ 5 \ 1 \ 4 \ 2$$

Key Idea: ϕ removes the smallest $k \ldots 1$ pattern.
Definition of the BWX map ϕ^*

Now the map of interest

$$\phi^* : S_n \rightarrow S_n(k \ldots 1)$$
Definition of the BWX map ϕ^*

Now the map of interest

$$\phi^* : S_n \rightarrow S_n(k \ldots 1)$$

is obtained by repeatedly applying the map ϕ until no $(k \ldots 1)$-pattern remains.
The commutativity of ϕ^*

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$
The commutativity of ϕ^*

It was first observed by Bousquet-Méléou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

- Their proof is long and difficult.
The commutativity of ϕ^*

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

- Their proof is long and difficult.
- They ask for an alternative description of the map ϕ^* “on which the commutation theorem would become obvious.”
The commutativity of ϕ^*

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

- Their proof is long and difficult.
- They ask for an alternative description of the map ϕ^* “on which the commutation theorem would become obvious.”

Later, Krattenthaler published a bijection based on the standard Growth Diagram Algorithm (GDA) which is similar in functionality to ϕ^* and trivially commutes with inverses.
The commutativity of ϕ^*

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

- Their proof is long and difficult.
- They ask for an alternative description of the map ϕ^* “on which the commutation theorem would become obvious.”

Later, Krattenthaler published a bijection based on the standard Growth Diagram Algorithm (GDA) which is similar in functionality to ϕ^* and trivially commutes with inverses.

- He explicitly ask for a connection between ϕ^* and the GDA.
Ferrers Boards & Placements

Definition (Informal): A Ferrers Board F is an array of squares obtained by removing some "northeast chunk" from the $n \times n$ array leaving a staircase shape.

Definition: A rook placement P on a Ferrers Board F is an arrangement of dots with no two in the same row or column.
Definition (Informal): A Ferrers Board F is an array of squares obtained by removing some “northeast chunk” from the $n \times n$ array of squares leaving a staircase shape.
Definition (Informal): A Ferrers Board F is an array of squares obtained by removing some “northeast chunk” from the $n \times n$ array of squares leaving a staircase shape.

Definition: A rook placement P on a Ferrers Board F is an arrangement of dots with no two in the same row or column.
Ferrers Boards & Placements

Definition (Informal): A Ferrers Board F is an array of squares obtained by removing some “northeast chunk” from the $n \times n$ array of squares leaving a staircase shape.

![Diagram of a Ferrers Board]

Definition: A rook placement P on a Ferrers Board F is an arrangement of dots with no two in the same row or column.
Motivation for the Reformulation of ϕ^*

Recall the Schensted correspondence $S_n \leftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

For example, $4, 5, 3, 1, 2 \leftrightarrow (1, 2, 3, 5, 4, 1, 2, 6, 8, 7)$ where the tableaux have common shape 221.

Theorem: The length of the longest decreasing subsequence in a permutation is the number of parts in its corresponding shape.

\triangleright 4, 5, 3, 1, 2 is longest and likewise 221 has 3 parts.

Key Idea: ϕ^* removes k patterns \leftrightarrow force shape to have $< k$ parts.
Motivation for the Reformulation of ϕ^*

Recall the Schensted correspondence $S_n \leftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

For example

\[
4 \ 5 \ 3 \ 1 \ 2 \ \leftrightarrow \ (1 \ 2 \ 3, 1 \ 2 \ 6 \ 8 \ 7)
\]

where the tableaux have common shape 221.

Theorem:
The length of the longest decreasing subsequence in a permutation is the number of parts in its corresponding shape.

$\Rightarrow 4 \ 5 \ 3 \ 1 \ 2$ is longest and likewise 221 has 3 parts.

Key Idea

ϕ^* removes k ..., 1 patterns \leftrightarrow force shape to have < k parts.
Motivation for the Reformulation of ϕ^*

Recall the Schensted correspondence $S_n \longleftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

For example

$$4 \ 5 \ 3 \ 1 \ 2 \quad \longleftrightarrow \quad \begin{pmatrix} 1 & 2 \\ 3 & 5 \\ 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 \\ 6 & 8 \\ 7 \end{pmatrix}$$

where the tableaux have common shape 221.
Motivation for the Reformulation of ϕ^*

Recall the Schensted correspondence $S_n \leftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

For example

$$4 \ 5 \ 3 \ 1 \ 2 \leftrightarrow \left(\begin{array}{cc}
1 & 2 \\
3 & 5 \\
4 & \end{array}, \begin{array}{cc}
1 & 2 \\
6 & 8 \\
7 & \end{array} \right)$$

where the tableaux have common shape 221.

Theorem: The length of the longest decreasing subsequence in a permutation is the number of parts in its corresponding shape.

- $4 \ 5 \ 3 \ 1 \ 2$ is longest and likewise 221 has 3 parts.
Motivation for the Reformulation of ϕ^*

Recall the Schensted correspondence $S_n \leftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

For example

$4 \ 5 \ 3 \ 1 \ 2 \ \leftrightarrow \ \left(\begin{array}{c} 1 \ 2 \\ 3 \ 5 \\ 4 \end{array} , \ \begin{array}{c} 1 \ 2 \\ 6 \ 8 \\ 7 \end{array} \right)$

where the tableaux have common shape 221.

Theorem: The length of the longest decreasing subsequence in a permutation is the number of parts in its corresponding shape.

- $4 \ 5 \ 3 \ 1 \ 2$ is longest and likewise 221 has 3 parts.

Key Idea

ϕ^* removes $k \ldots 1$ patterns \leftrightarrow force shape to have $< k$ parts.
Fomin’s Growth Diagram Construction
Fomin’s Growth Diagram Construction

Each corner of the Ferrers board is labeled a partition which is the shape of the permutation southwest of that corner.
Local Rules for Growth Diagrams

Start by assigning the empty partition \emptyset on the left and bottom edges of F.
Local Rules for Growth Diagrams

- Start by assigning the empty partition \emptyset on the left and bottom edges of F.
Local Rules for Growth Diagrams

- Start by assigning the empty partition \emptyset on the left and bottom edges of F.
Local Rules for Growth Diagrams

Given partitions
Local Rules for Growth Diagrams

Given partitions

if $SE \neq NW$

$21 = SE \cup NW$

Key Idea: Only the last rule can increase the number of parts of a partition.
Local Rules for Growth Diagrams

Given partitions

if $SE \neq NW$

if $SW = NW = SE$

Key Idea: Only the last rule can increase the number of parts of a partition.
Local Rules for Growth Diagrams

Given partitions

- If $SE \neq NW$

 \[
 \begin{array}{c}
 1 \\
 \end{array} \quad \begin{array}{c}
 11 \\
 \end{array} = \begin{array}{c}
 \text{SE} \\
 \end{array} \cup \begin{array}{c}
 \text{NW} \\
 \end{array}
 \]

- If $SW = NW = SE$

 \[
 \begin{array}{c}
 11 \\
 \end{array} \quad \begin{array}{c}
 11 \\
 \end{array} = \begin{array}{c}
 \text{NW} \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 11 \\
 \end{array} \quad \begin{array}{c}
 11 \\
 \end{array} = \begin{array}{c}
 \text{NW} + 1 \text{ top row} \\
 \end{array}
 \]

- If $SW \neq NW = SE$

 \[
 \begin{array}{c}
 1 \\
 \end{array} \quad \begin{array}{c}
 11 \\
 \end{array} = \begin{array}{c}
 \text{NW} + 001 \\
 \end{array}
 \]

\textbf{Key Idea:} Only the last rule can increase the number of parts of a partition.
Local Rules for Growth Diagrams

\[\text{Def:} \quad \text{seq}(P, F) \text{ denote the sequence of partitions along the } \text{"staircase".} \]

\[\text{seq}(P, F) := (\emptyset, 1, 2, 3, 2, 3, 4, 3, 31, 21, 211, 221, \ldots, 1, \emptyset) \]

\[\text{Theorem:} \quad \text{seq}(P, F) \text{ uniquely determines } P. \]
Local Rules for Growth Diagrams

Def: Let \(\text{seq}(P,F) \) denote the sequence of partitions along the "staircase".

\[
\text{seq}(P,F) := (\emptyset, 1, 2, 3, 3, 3, 4, 3, 3, 31, 21, 211, 221, \ldots, 1, \emptyset)
\]

Theorem: \(\text{seq}(P,F) \) uniquely determines \(P \).
Local Rules for Growth Diagrams

Def: Let $\text{seq}(P, F)$ denote the sequence of partitions along the “staircase”.

\[
\text{seq}(P, F) := (\emptyset, 1, 2, 3, 4, 21, 211, 221, \ldots, 1, \emptyset, \ldots)
\]

Theorem: $\text{seq}(P, F)$ uniquely determines P.
Local Rules for Growth Diagrams

Def: Let $seq(P, F)$ denote the sequence of partitions along the “staircase”.

$\triangleright\ seq(P, F) := (\emptyset, 1, 2, 3, 2, 3, 4, 3, 31, 21, 211, 221, \ldots, 1, \emptyset)$
Local Rules for Growth Diagrams

Def: Let $\text{seq}(P, F)$ denote the sequence of partitions along the “staircase”.

$\triangleright \text{seq}(P, F) := (\emptyset, 1, 2, 3, 2, 3, 4, 3, 31, 21, 211, 221, \ldots, 1, \emptyset)$

Theorem: $\text{seq}(P, F)$ uniquely determines P.
Our Reformulation of ϕ^*
Our Reformulation of ϕ^*

if $SE \neq NW$

if $SW = NW = SE$

Diagram:

2 21 = SE \cup NW

1 11

11 11 = NW

11 11

11 21 = NW + 1 top row
Our Reformulation of ϕ^*

if $SE \neq NW$

if $SW = NW = SE$

*if $SW \neq NW = SE$

\[
\begin{array}{c}
\text{2} & \text{21} = SE \cup NW \\
\text{1} & \text{11} \\
\end{array}
\]

\[
\begin{array}{c}
\text{11} & \text{11} = NW \\
\text{11} & \text{11} \\
\end{array}
\]

\[
\begin{array}{c}
\text{11} & \text{11} = NW + 001 \\
\text{1} & \text{11} \\
\end{array}
\]

\[
\begin{array}{c}
\text{11} & \text{21} = NW + 1 \text{ top row} \\
\text{11} & \text{11} \\
\end{array}
\]
Our Reformulation of ϕ^*

if $SE \neq NW$

if $SW = NW = SE$

*if $SW \neq NW = SE$

Modified Rule for GDA_k....

*if last rule makes $|NE| \geq k$ then
Our Reformulation of ϕ^*
Our Reformulation of ϕ^*

GDA_3 on (P, F)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our Reformulation of ϕ^*

GDA_3 on (P, F)

GDA on $(\phi^*(P), F)$
Our Reformulation of ϕ^*

GDA_3 on (P, F)

GDA on $(\phi^*(P), F)$

Main Theorem: For any rook placement P on a Ferrers board F,

$$seq_k(P, F) = seq(\phi^*(P), F)$$
Our Commutation Result

Definition:
Let P' denote the inverse of a placement.

Note:
$\text{seq}(P', F) = \text{rev}(\text{seq}(P, F))$

Corollary:
For any rook placement P on a Ferrers board F,
$\phi^*(P') = (\phi^*(P))'$

Proof.
By the Main Theorem and the note above we have:
$\text{seq}(\phi^*(P'), F) = \text{seq}(\text{rev}(\text{seq}(P, F)), F) = \text{rev}(\text{seq}(\phi^*(P), F)) = \text{seq}((\phi^*(P))', F)$

Hence we conclude that $\phi^*(P') = (\phi^*(P))'$.
Our Commutation Result

Definition: Let P' denote the inverse of a placement.
Our Commutation Result

Definition: Let P' denote the inverse of a placement.

Note: $seq(P', F) = rev(seq(P, F))$

Our Commutation Result

Definition: Let P' denote the inverse of a placement.

Note: $seq(P', F) = rev(seq(P, F))$

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$
Our Commutation Result

Definition: Let \(P' \) denote the inverse of a placement.

Note: \(\text{seq}(P', F) = \text{rev}(\text{seq}(P, F)) \)

Corollary: For any rook placement \(P \) on a Ferrers board \(F \),

\[
\phi^*(P') = (\phi^*(P))'
\]

Proof. By the Main Theorem and the note above we have:

\[
\text{seq}(\phi^*(P'), F) = \text{seq}_k(P', F)
\]
Our Commutation Result

Definition: Let P' denote the inverse of a placement.

Note: $\text{seq}(P', F) = \text{rev}(\text{seq}(P, F))$

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$

Proof. By the Main Theorem and the note above we have:

$$\text{seq}(\phi^*(P'), F) = \text{seq}_k(P', F)$$

$$= \text{rev}(\text{seq}_k(P, F))$$
Our Commutation Result

Definition: Let \(P' \) denote the inverse of a placement.

Note: \(\text{seq}(P', F) = \text{rev}(\text{seq}(P, F)) \)

Corollary: For any rook placement \(P \) on a Ferrers board \(F \),

\[
\phi^*(P') = (\phi^*(P))'
\]

Proof. By the Main Theorem and the note above we have:

\[
\begin{align*}
\text{seq}(\phi^*(P'), F) & = \text{seq}_k(P', F) \\
& = \text{rev}(\text{seq}_k(P, F)) \\
& = \text{rev}(\text{seq}(\phi^*(P), F))
\end{align*}
\]

Hence we conclude that \(\phi^*(P') = (\phi^*(P))' \).
Our Commutation Result

Definition: Let \(P' \) denote the inverse of a placement.

Note: \(\text{seq}(P', F) = \text{rev}(\text{seq}(P, F)) \)

Corollary: For any rook placement \(P \) on a Ferrers board \(F \),

\[
\phi^*(P') = (\phi^*(P))'
\]

Proof. By the Main Theorem and the note above we have:

\[
\text{seq}(\phi^*(P'), F) = \text{seq}_k(P', F) \\
= \text{rev}(\text{seq}_k(P, F)) \\
= \text{rev}(\text{seq}(\phi^*(P), F)) \\
= \text{seq}((\phi^*(P))', F)
\]
Our Commutation Result

Definition: Let P' denote the inverse of a placement.

Note: $\text{seq}(P', F) = \text{rev}(\text{seq}(P, F))$

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$

Proof. By the Main Theorem and the note above we have:

$$\text{seq} (\phi^*(P'), F) = \text{seq}_k(P', F)$$
$$= \text{rev}(\text{seq}_k(P, F))$$
$$= \text{rev}(\text{seq}(\phi^*(P), F))$$
$$= \text{seq}((\phi^*(P))', F)$$

Hence we conclude that $\phi^*(P') = (\phi^*(P))'$.