Modified Growth Diagrams and the BWX Map ϕ^*

Jonathan Bloom

Dartmouth College

Saint Michael's College July, 2011

Consider a permutation $\sigma \in S_n$ as a word in the alphabet $\{1,2,3,\ldots,n\}$.

Consider a permutation $\sigma \in S_n$ as a word in the alphabet $\{1, 2, 3, \dots, n\}$.

For example we write

$$\sigma =$$
 4 5 3 1 2

for the permutation (in 2-line notation)

$$\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 3 & 1 & 2
\end{array}\right)$$

We say a permutation $\sigma \in S_n$ contains a pattern $\tau \in S_k$ if σ contains a subsequence which is order-isomorphic to τ .

We say a permutation $\sigma \in S_n$ contains a pattern $\tau \in S_k$ if σ contains a subsequence which is order-isomorphic to τ .

For example

$$\sigma = 4$$
5 3 1 2 contains $\tau = 3$ 2 1

but does not contain $\tau = 1 \ 2 \ 3$.

We say a permutation $\sigma \in S_n$ contains a pattern $\tau \in S_k$ if σ contains a subsequence which is order-isomorphic to τ .

For example

$$\sigma = 4$$
5 3 1 2 contains $\tau = 3$ 2 1

but does not contain $\tau = 1 \ 2 \ 3$.

We write $S_n(\tau)$ for all permutations of length n which **avoid** τ .

An important problem in pattern avoidance is to determine when

$$|S_n(\tau)| = |S_n(\rho)|$$
 for all n.

for two distinct patterns τ and ρ .

An important problem in pattern avoidance is to determine when

$$|S_n(\tau)| = |S_n(\rho)|$$
 for all n.

for two distinct patterns τ and ρ .

▶ In this case we say τ is Wilf-Equivalent to ρ .

An important problem in pattern avoidance is to determine when

$$|S_n(\tau)| = |S_n(\rho)|$$
 for all n.

for two distinct patterns τ and ρ .

▶ In this case we say τ is Wilf-Equivalent to ρ .

A classic result in the field is that

$$|S_n(\tau)| = C_n = \frac{1}{n+1} {2n \choose n}$$

for all $\tau \in S_3$.

Another classic result due to Backelin, West, Xin (BWX) is:

$$|S_n(12\ldots k\rho)| = |S_n(k\ldots 1\rho)|$$
 for all n

where ρ is an permutation of $\{k+1,\ldots,k+l\}$.

Another classic result due to Backelin, West, Xin (BWX) is:

$$|S_n(12...k\rho)| = |S_n(k...1\rho)|$$
 for all n

where ρ is an permutation of $\{k+1,\ldots,k+l\}$.

An important tool in their proof is the map

$$\phi^*: S_n \to S_n(k \dots 1)$$

which is the focus of this talk.

First we define the (intermediate) map

$$\phi: S_n \to S_n$$

which is implicitly dependent on some fixed k > 2.

First we define the (intermediate) map

$$\phi: S_n \to S_n$$

which is implicitly dependent on some fixed k > 2.

For any $\sigma \in S_n$

Definition of the BWX map ϕ^{\ast}

First we define the (intermediate) map

$$\phi: S_n \to S_n$$

which is implicitly dependent on some fixed k > 2.

For any $\sigma \in S_n$

▶ Take the smallest $k \dots 1$ -pattern in σ and cycle these entries forward leaving all other fixed.

First we define the (intermediate) map

$$\phi: S_n \to S_n$$

which is implicitly dependent on some fixed k > 2.

For any $\sigma \in S_n$

▶ Take the smallest $k \dots 1$ -pattern in σ and cycle these entries forward leaving all other fixed.

For example if k = 3 and $\sigma = 45312$ then

$$\phi(\sigma) = 35142$$

First we define the (intermediate) map

$$\phi: S_n \to S_n$$

which is implicitly dependent on some fixed k > 2.

For any $\sigma \in S_n$

▶ Take the smallest $k \dots 1$ -pattern in σ and cycle these entries forward leaving all other fixed.

For example if k = 3 and $\sigma = 45312$ then

$$\phi(\sigma) = 3\ 5\ 1\ 4\ 2$$

Key Idea: ϕ removes the smallest $k \dots 1$ pattern.

Now the map of interest

$$\phi^*: S_n \to S_n(k \dots 1)$$

Now the map of interest

$$\phi^*: S_n \to S_n(k \dots 1)$$

is obtained by repeatedly applying the map ϕ until no ($k\ldots 1$)-pattern remains.

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

► Their proof is long and difficult.

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

- ▶ Their proof is long and difficult.
- ▶ They ask for an alternative description of the map ϕ^* "on which the commutation theorem would become obvious."

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

- Their proof is long and difficult.
- ▶ They ask for an alternative description of the map ϕ^* "on which the commutation theorem would become obvious."

Later, Krattenthaler published a bijection based on the standard Growth Diagram Algorithm (GDA) which is similar in functionality to ϕ^* and trivially commutes with inverses.

It was first observed by Bousquet-Mélou and Steingrímsson that

$$\phi^*(\sigma^{-1}) = \phi^*(\sigma)^{-1}$$

- Their proof is long and difficult.
- ▶ They ask for an alternative description of the map ϕ^* "on which the commutation theorem would become obvious."

Later, Krattenthaler published a bijection based on the standard Growth Diagram Algorithm (GDA) which is similar in functionality to ϕ^* and trivially commutes with inverses.

▶ He explicitly ask for a connection between ϕ^* and the GDA.

Definition (Informal): A Ferrers Board F is an array of squares obtained by removing some "northeast chunk" from the $n \times n$ array of squares leaving a staircase shape.

Definition (Informal): A Ferrers Board F is an array of squares obtained by removing some "northeast chunk" from the $n \times n$ array of squares leaving a staircase shape.

Definition: A rook placement P on a Ferrers Board F is an arrangement of dots with no two in the same row or column.

Definition (Informal): A Ferrers Board F is an array of squares obtained by removing some "northeast chunk" from the $n \times n$ array of squares leaving a staircase shape.

Definition: A rook placement P on a Ferrers Board F is an arrangement of dots with no two in the same row or column.

Recall the Schensted correspondence $S_n \longleftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

Recall the Schensted correspondence $S_n \longleftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

For example

$$45312 \longleftrightarrow \begin{pmatrix} \boxed{1} & \boxed{2} \\ \boxed{3} & \boxed{5} \\ \boxed{4} \\ \boxed{7} \end{pmatrix}$$

where the tableaux have common shape 221.

Recall the Schensted correspondence $S_n \longleftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

For example

$$45312 \longleftrightarrow \begin{pmatrix} \boxed{1} & \boxed{2} \\ \boxed{3} & \boxed{5} \\ \boxed{4} \\ \end{bmatrix}, \begin{bmatrix} \boxed{1} & \boxed{2} \\ \boxed{6} & \boxed{8} \\ \boxed{7} \end{pmatrix}$$

where the tableaux have common shape 221.

Theorem: The length of the longest decreasing subsequence in a permutation is the number of parts in its corresponding shape.

▶ 4 5 3 1 2 is longest and likewise 221 has 3 parts.

Recall the Schensted correspondence $S_n \longleftrightarrow (P, Q)$ where P and Q are tableaux of the same shape.

For example

$$45312 \longleftrightarrow \begin{pmatrix} \boxed{1} & \boxed{2} \\ \boxed{3} & \boxed{5} \\ \boxed{4} \\ \end{bmatrix}, \begin{bmatrix} \boxed{1} & \boxed{2} \\ \boxed{6} & \boxed{8} \\ \boxed{7} \end{pmatrix}$$

where the tableaux have common shape 221.

Theorem: The length of the longest decreasing subsequence in a permutation is the number of parts in its corresponding shape.

▶ 4 5 3 1 2 is longest and likewise 221 has 3 parts.

Key Idea

 ϕ^* removes $k \dots 1$ patterns \longleftrightarrow force shape to have < k parts.

Fomin's Growth Diagram Construction

Fomin's Growth Diagram Construction

Each corner of the Ferrers board is labeled a partition which is the shape of the permutation southwest of that corner.

▶ Start by assigning the empty partition \emptyset on the left and bottom edges of F.

▶ Start by assigning the empty partition \emptyset on the left and bottom edges of F.

Given partitions

Given partitions

if
$$SE \neq NW$$

Given partitions

if
$$SE \neq NW$$

if SW = NW = SE

11

Given partitions

Key Idea: Only the last rule can increase the number of parts of a partition.

Ø	1	2	• 3					
Ø	1	2	2	3	• 4			
Ø	1	2	2	• 3	3	31		
Ø	1	•2	2	2	2	21	211	221
Ø	• 1	1	1	1	1	11	111	211
Ø	Ø	Ø	Ø	Ø	Ø	•1	11	21
Ø	Ø	Ø	Ø	Ø	Ø	Ø	1	•2
Ø	Ø	Ø	Ø	Ø	Ø	Ø	•1	1
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Def: Let seq(P, F) denote the sequence of partitions along the "staircase".

Def: Let seq(P, F) denote the sequence of partitions along the "staircase".

 $ightharpoonup seq(P,F) := (\emptyset,1,2,3,2,3,4,3,31,21,211,221,\ldots,1,\emptyset)$

Def: Let seq(P, F) denote the sequence of partitions along the "staircase".

$$ightharpoonup seq(P, F) := (\emptyset, 1, 2, 3, 2, 3, 4, 3, 31, 21, 211, 221, \dots, 1, \emptyset)$$

Theorem: seq(P, F) uniquely determines P.

if
$$SE \neq NW$$

$$1 \qquad 11 \qquad 11 = NW \qquad 11 \qquad 21 = NW + 1 \text{ top row}$$
 if $SW = NW = SE$
$$11 \qquad 11 = NW + 001$$
 *if $SW \neq NW = SE$

if
$$SE \neq NW$$

$$1 \qquad 11 \qquad 11 = NW \qquad 11 \qquad 21 = NW + 1 \text{ top row}$$

$$1 \qquad 11 \qquad 11 = NW \qquad 11 \qquad 21 = NW + 1 \text{ top row}$$

$$1 \qquad 11 \qquad 11 = NW + 001$$
*if $SW \neq NW = SE$

Modified Rule for GDA_k

*if last rule rule makes $|NE| \ge k$ then

Our Reformulation of ϕ^* GDA_3 on (P, F)

Ø	1	2	• 3					
Ø	1	2	2	3	•4			
Ø	1	2	2	•3	3	31		
Ø	1	•2	2	2	2	21	22	32
Ø	•1	1	1	1	1	11	21	22
Ø	Ø	Ø	Ø	Ø	Ø	$ullet^1$	11	21
Ø	Ø	Ø	Ø	Ø	Ø	Ø	1	•2
Ø	Ø	Ø	Ø	Ø	Ø	Ø	• 1	1
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

 GDA_3 on (P, F)

Ø	1	2	•3					
Ø	1	2	2	3	•4			
Ø	1	2	2	•3	3	31		
Ø	1	•2	2	2	2	21	22	32
Ø	•1	1	1	1	1	11	21	22
Ø	Ø	Ø	Ø	Ø	Ø	• 1	11	21
Ø	Ø	Ø	Ø	Ø	Ø	Ø	1	•2
Ø	Ø	Ø	Ø	Ø	Ø	Ø	• 1	1
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

GDA on $(\phi^*(P), F)$

Ø	1	2	•3					
Ø	1	2	2	3	•4			
Ø	1	2	2	•3	3	31		
Ø	1	2	2	2	2	21	22	32 ●
Ø	1	•2	2	2	2	21	22	22
Ø	$ullet^1$	1	1	1	1	11	21	21
Ø	Ø	Ø	Ø	Ø	Ø	1	•2	2
Ø	Ø	Ø	Ø	Ø	Ø	$ullet^1$	1	1
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

$$GDA_3$$
 on (P, F)

GDA on
$$(\phi^*(P), F)$$

Main Theorem: For any rook placement P on a Ferrers board F,

$$seq_k(P, F) = seq(\phi^*(P), F)$$

Definition: Let P' denote the inverse of a placement.

Definition: Let P' denote the inverse of a placement.

Note: seq(P', F) = rev(seq(P, F))

Definition: Let P' denote the inverse of a placement.

Note: seq(P', F) = rev(seq(P, F))

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$

Definition: Let P' denote the inverse of a placement.

Note: seq(P', F) = rev(seq(P, F))

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$

$$seq(\phi^*(P'), F) = seq_k(P', F)$$

Definition: Let P' denote the inverse of a placement.

Note: seq(P', F) = rev(seq(P, F))

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$

$$seq(\phi^*(P'), F) = seq_k(P', F)$$

= $rev(seq_k(P, F))$

Definition: Let P' denote the inverse of a placement.

Note: seq(P', F) = rev(seq(P, F))

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$

$$seq(\phi^*(P'), F) = seq_k(P', F)$$

$$= rev(seq_k(P, F))$$

$$= rev(seq(\phi^*(P), F))$$

Definition: Let P' denote the inverse of a placement.

Note: seq(P', F) = rev(seq(P, F))

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$

$$seq(\phi^*(P'), F) = seq_k(P', F)$$

$$= rev(seq_k(P, F))$$

$$= rev(seq(\phi^*(P), F))$$

$$= seq((\phi^*(P))', F)$$

Definition: Let P' denote the inverse of a placement.

Note: seq(P', F) = rev(seq(P, F))

Corollary: For any rook placement P on a Ferrers board F,

$$\phi^*(P') = (\phi^*(P))'$$

Proof. By the Main Theorem and the note above we have:

$$seq(\phi^*(P'), F) = seq_k(P', F)$$

$$= rev(seq_k(P, F))$$

$$= rev(seq(\phi^*(P), F))$$

$$= seq((\phi^*(P))', F)$$

Hence we conclude that $\phi^*(P') = (\phi^*(P))'$.