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{1, 2, 3, . . . , n}.

For example we write
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1 2 3 4 5
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An important problem in pattern avoidance is to determine when

|Sn(τ)| = |Sn(ρ)| for all n.

for two distinct patterns τ and ρ.

I In this case we say τ is Wilf-Equivalent to ρ.

A classic result in the field is that

|Sn(τ)| = Cn =
1

n + 1

(
2n

n
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for all τ ∈ S3.
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Another classic result due to Backelin, West, Xin (BWX) is:

|Sn(12 . . . kρ)| = |Sn(k . . . 1ρ)| for all n

where ρ is an permutation of {k + 1, . . . , k + l}.

An important tool in their proof is the map

φ∗ : Sn → Sn(k . . . 1)

which is the focus of this talk.
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Definition of the BWX map φ∗

First we define the (intermediate) map

φ : Sn → Sn

which is implicitly dependent on some fixed k > 2.

For any σ ∈ Sn

I Take the smallest k . . . 1-pattern in σ and cycle these entries
forward leaving all other fixed.

For example if k = 3 and σ = 4 5 3 1 2 then

φ(σ) = 3 5 1 4 2

Key Idea: φ removes the smallest k . . . 1 pattern.
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The commutativity of φ∗

It was first observed by Bousquet-Mélou and Steingŕımsson that

φ∗(σ−1) = φ∗(σ)−1

I Their proof is long and difficult.

I They ask for an alternative description of the map φ∗ “on
which the commutation theorem would become obvious.”

Later, Krattenthaler published a bijection based on the standard
Growth Diagram Algorithm (GDA) which is similar in functionality
to φ∗ and trivially commutes with inverses.

I He explicitly ask for a connection between φ∗ and the GDA.
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Definition (Informal): A Ferrers Board F is an array of squares
obtained by removing some “northeast chunk” from the nxn array
of squares leaving a staircase shape.

Definition: A rook placement P on a Ferrers Board F is an
arrangement of dots with no two in the same row or column.
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Motivation for the Reformulation of φ∗

Recall the Schensted correspondence Sn ←→ (P,Q) where P and
Q are tableaux of the same shape.

For example

4 5 3 1 2 ←→

(
1 2
3 5
4 ,

1 2
6 8
7

)

where the tableaux have common shape 221.

Theorem: The length of the longest decreasing subsequence in a
permutation is the number of parts in its corresponding shape.

I 4 5 3 1 2 is longest and likewise 221 has 3 parts.

Key Idea

φ∗ removes k . . . 1 patterns ←→ force shape to have < k parts.
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Each corner of the Ferrers board is labeled a partition which is the
shape of the permutation southwest of that corner.
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Key Idea: Only the last rule can increase the number of parts of a
partition.
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Def: Let seq(P,F ) denote the sequence of partitions along the
“staircase”.

I seq(P,F ) := (∅, 1, 2, 3, 2, 3, 4, 3, 31, 21, 211, 221, . . . , 1, ∅)

Theorem: seq(P,F ) uniquely determines P.
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Main Theorem: For any rook placement P on a Ferrers board F ,

seqk(P,F ) = seq(φ∗(P),F )
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seqk(P,F ) = seq(φ∗(P),F )



Our Commutation Result

Definition: Let P ′ denote the inverse of a placement.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.
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