On a recent conjecture in pattern avoidance

Jonathan S. Bloom Rutgers University

AMS Sectional Meeting - Georgetown University, March 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation

In general, for any $\sigma \in S_k$ we denote by

$\operatorname{Av}_n(\sigma)$

the set of all permutations (length n) that avoid σ .

Notation

In general, for any $\sigma \in S_k$ we denote by

$Av_n(\sigma)$

the set of all permutations (length n) that avoid σ . In this setting σ is called a **pattern**.

Notation

In general, for any $\sigma \in S_k$ we denote by

 $Av_n(\sigma)$

the set of all permutations (length n) that avoid σ . In this setting σ is called a **pattern**.

We say two patterns $\sigma, \tau \in S_k$ are **Wilf-equivalent** provided

$$|\operatorname{Av}_n(\sigma)| = |\operatorname{Av}_n(\tau)|$$

for all n.

Notation

In general, for any $\sigma \in S_k$ we denote by

 $Av_n(\sigma)$

the set of all permutations (length n) that avoid σ . In this setting σ is called a **pattern**.

We say two patterns $\sigma, \tau \in S_k$ are **Wilf-equivalent** provided

$$|\operatorname{Av}_n(\sigma)| = |\operatorname{Av}_n(\tau)|$$

for all *n*. We write $\sigma \sim \tau$.

Notation

In general, for any $\sigma \in S_k$ we denote by

 $Av_n(\sigma)$

the set of all permutations (length n) that avoid σ . In this setting σ is called a **pattern**.

We say two patterns $\sigma, \tau \in S_k$ are **Wilf-equivalent** provided

$$|\operatorname{Av}_n(\sigma)| = |\operatorname{Av}_n(\tau)|$$

for all *n*. We write $\sigma \sim \tau$.

All patterns τ of length 3 are Wilf-equivalent. Moreover,

$$|\operatorname{Av}_n(\tau)| = \frac{1}{1+n} \binom{2n}{n}.$$

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1 4 2 3 1 2 3 4 1 3 2 4	103	513	2762	15793	94776	

We have:

Class n	1					
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classic results

There are exactly 3 Wilf-classes in S₄

We have:

Class n						
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Classic results

- ▶ There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3

We have:

Class n	5	6	7	8	9	
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Classic results

- There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure

We have:

Class n						
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

Classic results

- There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure
 - Only ad hoc Wilf-equivalence known for singleton patterns

We have:

Class n						
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

Classic results

- There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure
 - Only ad hoc Wilf-equivalence known for singleton patterns

New results

We have:

Class n						
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

Classic results

- There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure
 - Only ad hoc Wilf-equivalence known for singleton patterns

New results

• We give (first) bijective proof that 1 4 2 3 \sim 2 4 1 3

We have:

Class n	1					
1423	103	512	2740	15485	91245	
1234	103	513	2761	15767	94359	
1324	103	513	2762	15793	94776	

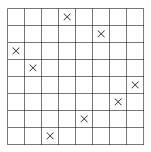
Classic results

- There are exactly 3 Wilf-classes in S₄
- Stankova (1994) proved that 1 4 2 3 \sim 2 4 1 3
 - Proof idea: Same recursive structure
 - Only ad hoc Wilf-equivalence known for singleton patterns

New results

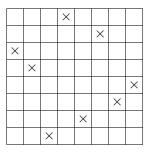
- We give (first) bijective proof that 1 4 2 3 \sim 2 4 1 3
- Resolves a conjecture of Dokos, et al. (2012)
 - REU group under Sagan

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

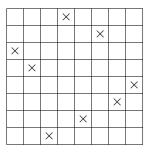
Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some statistics:

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

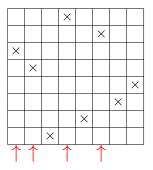


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some statistics:

• Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

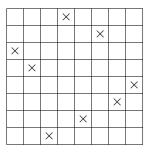


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some statistics:

• Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$

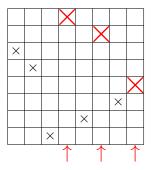
Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$



Some statistics:

- Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$
- RL maxima are **positions** *i* such NE of π_i we have nothing!

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

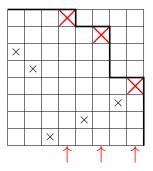


Some statistics:

- Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$
- RL maxima are **positions** *i* such NE of π_i we have nothing!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consider the permutation $\pi = 6\ 5\ 1\ 8\ 2\ 7\ 3\ 4$

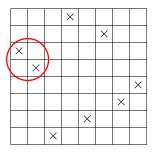


Some statistics:

- Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$
- RL maxima are **positions** *i* such NE of π_i we have nothing!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consider the permutation $\pi=6~5~1~8~2~7~3~4$



Some statistics:

- Descents are **positions** *i* such that $\pi_i > \pi_{i+1}$
- RL maxima are **positions** *i* such NE of π_i we have nothing!

– bonds

Fix any permutation statistic f.

Fix any permutation statistic f. We say two patterns σ, τ are **f-Wilf-equivalent**, and write

 $\sigma \sim_f \tau$,

provided there is a bijection Θ : $Av_n(\sigma) \rightarrow Av_n(\tau)$ that preserves the f statistic,

Fix any permutation statistic f. We say two patterns σ, τ are **f-Wilf-equivalent**, and write

 $\sigma \sim_f \tau$,

provided there is a bijection Θ : $Av_n(\sigma) \rightarrow Av_n(\tau)$ that preserves the f statistic, i.e.,

 $f = f \circ \Theta$,

Fix any permutation statistic f. We say two patterns σ, τ are **f-Wilf-equivalent**, and write

 $\sigma \sim_f \tau$,

provided there is a bijection Θ : $Av_n(\sigma) \rightarrow Av_n(\tau)$ that preserves the f statistic, i.e.,

$$f = f \circ \Theta$$
,

or

$$\sum_{\pi \in \mathsf{Av}(\sigma)} x^{|\pi|} t^{f(\pi)} = \sum_{\pi \in \mathsf{Av}(\tau)} x^{|\pi|} t^{f(\pi)}.$$

Fix any permutation statistic f. We say two patterns σ, τ are **f-Wilf-equivalent**, and write

 $\sigma \sim_f \tau$,

provided there is a bijection Θ : $Av_n(\sigma) \rightarrow Av_n(\tau)$ that preserves the f statistic, i.e.,

$$f=f\circ\Theta,$$

or

$$\sum_{\pi\in\mathsf{Av}(\sigma)} x^{|\pi|} t^{f(\pi)} = \sum_{\pi\in\mathsf{Av}(\tau)} x^{|\pi|} t^{f(\pi)}.$$

Conjecture (Dokos, et al., 2012)

The patterns 1423 and 2413 are Maj-Wilf-equivalent

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

such that Θ preserves set of descents (hence Major index),

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

such that Θ preserves set of descents (hence Major index), RL-maxima,

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds,

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and n - 1.

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and n - 1. Additionally, if

 $\pi \in \operatorname{Av}_n(1423) \cap \operatorname{Av}_n(2413)$

then $\Theta(\pi) = \pi$.

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and n - 1. Additionally, if

$$\pi \in \operatorname{Av}_n(1423) \cap \operatorname{Av}_n(2413)$$

then $\Theta(\pi) = \pi$.

Note

 \blacktriangleright Θ is not the same as Stankova's "implied" bijection.

Theorem (Bloom, 2014) There is an explicit bijection

 $\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$

such that Θ preserves set of descents (hence Major index), RL-maxima, -bonds, and position of n and n - 1. Additionally, if

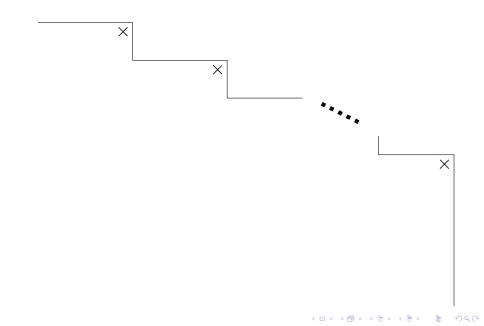
$$\pi \in \operatorname{Av}_n(1423) \cap \operatorname{Av}_n(2413)$$

then $\Theta(\pi) = \pi$.

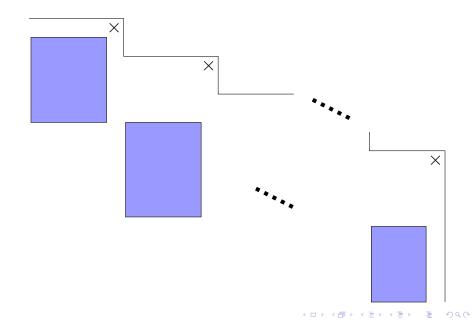
Note

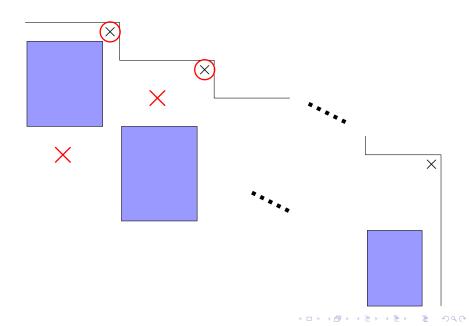
- \blacktriangleright Θ is not the same as Stankova's "implied" bijection.
- Stankova's isomorphism does not preserve these statistics.

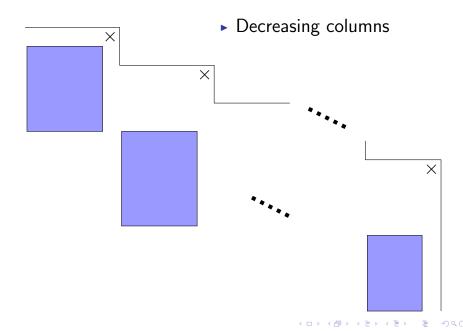
Anatomy of a 1423

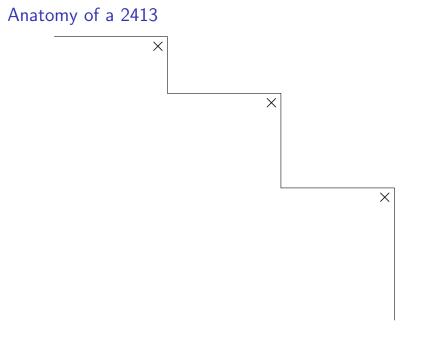


Anatomy of a 1423

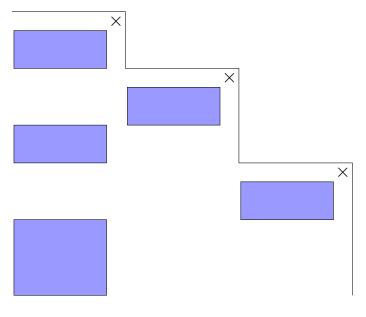


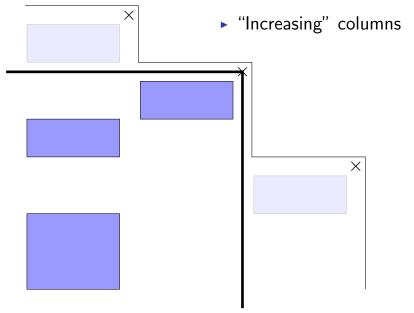


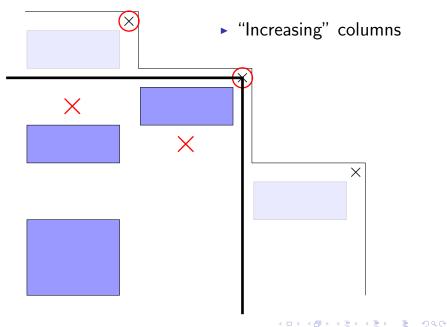




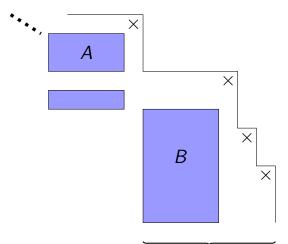
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで





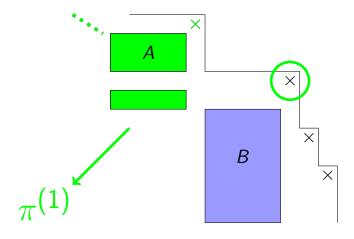


Given $\pi \in Av_n(1423)$ it decomposes as:



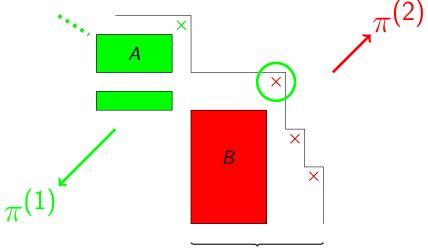
right-most column

Given $\pi \in Av_n(1423)$ it decomposes as:

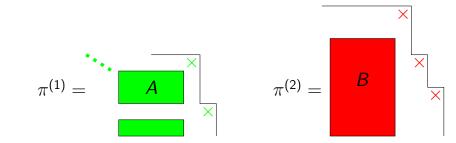


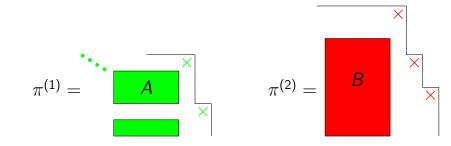
right-most column

Given $\pi \in Av_n(1423)$ it decomposes as:



right-most column





By induction,

$$\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$$

(日)、(四)、(E)、(E)、(E)

exists and preserves statistics

Including RL maxima!

$$\Theta(\pi^{(1)}) = A' \qquad \Theta(\pi^{(2)}) = B' \qquad \times$$

By induction,

$$\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

exists and preserves statistics

Including RL maxima!

$$\Theta(\pi^{(1)}) = A' A' \Theta(\pi^{(2)}) = B' X$$

By induction,

$$\Theta: \operatorname{Av}_n(1423) \to \operatorname{Av}_n(2413)$$

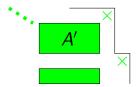
exists and preserves statistics

Including RL maxima!

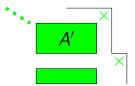
 \star Applying Θ to each part maintains structure!

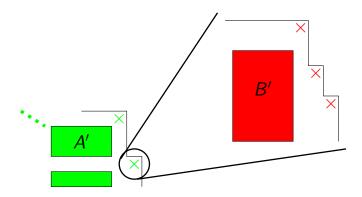
◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



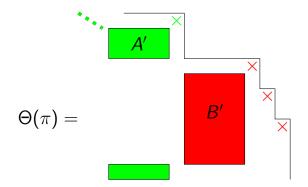






・ロト ・聞ト ・ヨト ・ヨト

Doing this we obtain our final result:



Egge's Conjecture

Consider the following table

						7	
Av _n (2143, 3142)							
$\mathit{n}\mathrm{th}$ large Schröder $\#$	2	6	22	90	394	1806	

Egge's Conjecture

Consider the following table

<i>n</i> =	2	3	4	5	6	7	
Av _n (2143, 3142)	2	6	22	90	395	1823	
<i>n</i> th large Schröder #							

Question (Egge): Are there any patterns $\tau \in S_6$ such that the sets

 $|Av_n(2143, 3142, \tau)|$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are counted by the large Schröder numbers?

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• These values of τ (and 180° rotations) are only patterns

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• These values of τ (and 180° rotations) are only patterns

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

Proved...

• Burstein and Pantone proved $\tau = 246135$

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

• $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers

• These values of τ (and 180° rotations) are only patterns

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases
 - ▶ 263514: simple permutations

$$\sum_{n\geq 0} |\operatorname{Av}_n(2143, 3142, \tau)| x^n = \frac{3-x-\sqrt{1-6x+x^2}}{2},$$

- $Av_n(2143, 3142, \tau)$ is counted by the large Schröder numbers
- These values of τ (and 180° rotations) are only patterns

Proved...

- Burstein and Pantone proved $\tau = 246135$
 - simple permutations
- Bloom and Burstein proved the remaining 4 cases
 - 263514: simple permutations
 - 254613, 524361, 546132: decomposition using LR-maxima
 - Similar flavor (more technical) to Θ : Av(1423) \rightarrow Av(2413)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank You!