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Shape-Wilf-equivalence

Definition
A Ferrers Board F is a square array of boxes with a “bite” taken
out of the northeast corner.

F =

×
×

×
×

×
×

Definition
A full rook placement (f.r.p) on F is a placement of markers with
EXACTLY one in each row and column.

Notation
RF = set of all f.r.p. on fixed board F
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Shape-Wilf-equivalence

Definition (by example)

The following f.r.p. contains the pattern 312 because...
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Read using cartesian coordinates!

I On the other hand this f.r.p. avoids the pattern 231.

Notation

I RF (τ) = set of all f.r.p. on F that avoid τ
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Shape-Wilf-equivalence

Definition
We say two patterns σ, τ ∈ Sk are shape-Wilf-equivalent and
write σ ∼ τ if

|RF (σ)| = |RF (τ)|,

for all Ferrers boards F .

Background

I Definition motived by sorting problems in computer science

I 123 . . . k ∼ k . . . 321 (J. Backlin, J. West, and G. Xin 2000)
I 231 ∼ 312 (Z. Stankova and J. West 2002)

I non-bijective and complicated proof

Our Work
I A bijective and (we think) simple proof that 231 ∼ 312

I Yields many nice enumerative results.
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• Diagonal Property: “Upper” ≤ “Lower”
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Our Bijection

Theorem (Bloom-Saracino ’11)

The mapping
Π : RF (231)→ DF (≤)

is bijective.

An analogous mapping

Θ : RF (312)→ DF (≥),

is also bijective.

Corollary (Bloom-Saracino ’11)

There exists a bijection between D(≤) and D(≥), thus 231 ∼ 312.
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Enumerative Results

The bijections Π and Θ have provided a general framework for
many enumerative problems.

Greatly simplified the enumeration of:

I Sn(2314) (M. Bóna 1997)

I Sn(2314, 1234) (D. Callan 2013)

I Permutations that are sortable using two increasing stacks in
series (M. Atkinson, M. Murphy, and N. Ruškuc 2002)

I Also led to NEW enumerative results in the study of “nestings
and crossings”
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I Sn(2314, 1234) (D. Callan 2013)

I Permutations that are sortable using two increasing stacks in
series (M. Atkinson, M. Murphy, and N. Ruškuc 2002)
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