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Definition
A full rook placement (f.r.p) on F is a placement of markers with
EXACTLY one in each row and column.

Notation
R = set of all f.r.p. on fixed board F
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Definition (by example)

The following f.r.p. contains the pattern 312 because...
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X

Read using cartesian coordinates!
> On the other hand this f.r.p. avoids the pattern 231.

Notation

» Rp(7) = set of all f.r.p. on F that avoid T
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Definition
We say two patterns o, 7 € S are shape-Wilf-equivalent and
write o ~ 7 if

Re(o)] = [Re(T)],

for all Ferrers boards F.

Background
» Definition motived by sorting problems in computer science
» 123...k ~ k...321 (J. Backlin, J. West, and G. Xin 2000)
» 231 ~ 312 (Z. Stankova and J. West 2002)

» non-bijective and complicated proof

Our Work
> A bijective and (we think) simple proof that 231 ~ 312
> Yields many nice enumerative results.
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Key Defining Property of Dge(<)
e Diagonal Property: “Upper’ < “Lower”
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Our Bijection

Theorem (Bloom-Saracino '11)

The mapping
MN:Re(231) = De(<)

is bijective. An analogous mapping
O: RF(312) — DF(Z),
is also bijective.

Corollary (Bloom-Saracino '11)
There exists a bijection between D(<) and D(>), thus 231 ~ 312.
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Enumerative Results

The bijections N1 and © have provided a general framework for
many enumerative problems.

Greatly simplified the enumeration of:
» 5,(2314) (M. Béna 1997)
» 5,(2314,1234) (D. Callan 2013)

» Permutations that are sortable using two increasing stacks in
series (M. Atkinson, M. Murphy, and N. Rukuc 2002)

» Also led to NEW enumerative results in the study of “nestings
and crossings”
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