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ABSTRACT

This paper discusses a project designed to enhance students’ knowledge of the basic techniques that are taught in a sophomore Multivariable Calculus course.  The skills covered in this project are parametric equations, dot and cross products, arc length, and the curvature of two and three-dimensional curves.  In addition to the discussion of the project, this paper also describes the process of creating such a project, the challenges encountered, and finally, the project’s success.

1. Introduction

We describe in this paper a project designed to enhance students’ knowledge of the basic techniques taught in a sophomore Multivariable Calculus course in the context of 2-D and 3-D modeling problems.  Before discussing this project, we first explain in general terms how to develop a project and then some ways on how to administer it.  The main portion of this paper is the description of the four requirements that made up the project and their solutions.  After the discussion of the project, we point out some of the challenges we encountered during the project’s development and administration.  In the final part of this paper we discuss the project’s success and some recommendations for those considering putting together a similar assignment for their students.
2. Development and Administration of the Project

The first step in creating a project is to determine its goals.  We had several goals for our project:  1) motivate the students by having them realize the relevance of their mathematical skills in solving real world problems; 2) create a more in-depth understanding of the concepts that were taught in the classroom, particularly through visualization using a three dimensional computer graphing program called Mathcad; 3) show the benefits of technology in solving complex problems; and finally, 4) have the project serve as a capstone for the block of instruction just completed, pulling together modeling, reasoning, technology, and communication skills, all threads in our core math program. 
The next step in the creation of a project is to decide the skills to be exercised.  We decided that we wanted to emphasize parametric equations, dot and cross products, arc length, and the curvature of 2-D and 3-D curves.  These skills were major objectives in our course and were just covered prior to issuing the project to the students.  

The final step is to determine how the project will be administered.  To compensate the students for their out of the classroom work, we allocated eight hours of project time in the syllabus.  In general, we expect students to spend two hours of preparation for each hour of class.  Six hours were allocated from two class hours, during which we did not meet, together with the four hours of class preparation that would have been expected.  The remaining two hours were allotted in the same way from the day that the project was due.  They had approximately three weeks to complete the project.

Five different sections totaling 85 students all did the same project at the same time.  Students in each section were divided into groups of two.  Therefore, each group received 16 hours of compensatory time for their work on the project.  Different sections were given different numbers in order to reduce the possibilities of plagiarism and to encourage discussion about issues that arose with their specific numbers.  Although we encouraged inter-group discussion, we expected the groups to do a majority of their work on their own.  Documentation was required for any assistance that was received from another team.  

The project that we outline here was one of two projects that we gave the students during the semester of our Multivariable Calculus course.  Traditionally, all of our core courses in the Department of Mathematics issue two projects per semester.  These projects are usually completed by groups of two or three students.  Our project was worth 400 points out of a total of 4500 points in the course.  

3. The Project

The first two requirements in this project were already examined in Computer Algebra Systems in Education Newsletter.
  Sections 3.1 - 3.3 repeat the same analysis for the benefit of the reader. 

3.1 Scenario

A certain Metropolitan Transportation Authority (MTA) currently has two train routes that exit from the northern side of a major city.  Both routes travel in a north / south direction; their separation varies from a few hundred meters in the city to several miles in the suburbs.  The local authorities would like to connect these two routes at some location north of the city so that in the event of a backup on one of the lines, as so often occurs, express trains can transfer over to the other line.  This proposed connection could save the MTA several million dollars per year in revenues that are lost because of delays. 

3.2 Path Analysis

The students are told that there were basically two feasible locations for the connecting route.  The first option was to connect the train lines along flat ground between cities M and N.  The other option was to connect the lines between cities K and L.  Cities K and L were much closer together than M and N, but the terrain was much more mountainous.  In the first two requirements, the students had the opportunity to analyze these options and then make an appropriate recommendation.

3.3 Requirement One – Analysis of the First Option

A schematic of the two train routes at cities M and N with the area of the proposed connection is shown in Figure 1. 
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Figure 1 Option One Schematic

The students’ objective was to model the track route connecting M and N as a piecewise function, assuming that city M was at the origin as shown in Figure 1.  When
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where
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is measured in miles.  The students were also told that for the train to move smoothly, the derivatives and curvatures of the proposed track must be equal to zero at the two station stops.  

In this requirement, students had to perform the following: 1) find a fifth order polynomial of the form 
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that connects the two pieces of track. 
  2) plot 
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 together on the same graph in order to show what the proposed track would look like; and 3) find the amount of track needed to construct the connection.  

To solve this problem, students had to find six equations needed to determine the six unknowns in 
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The second set of equations comes from ensuring the slopes of 
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at (0, 0) and (2, 2) equal zero:
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The final two equations are determined by utilizing the curvature function defined as
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After setting (8) equal to zero at (0, 0) and (2, 2), the following two equations result:
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and
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After simultaneously solving (4)-(7) and (9)-(10), the final solution was determined to be 
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The layout of the proposed track is then shown in Figure 2.
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Figure 2  Transfer Curve

To compute the arc-length of the new section of track, students used 
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where the limits of integration, a and b, were zero to two respectively.  The length for this track was determined to be 3.003 miles.

3.4 Requirement Two – Analysis of the Second Option

Option two examined an alternate way of joining the tracks using cities K and L.  Unlike the first option, in this option the students were given a model for the path of track over the mountainous terrain.  The projection of the track in the 
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-plane (how it would appear on a contour map) was modeled by 
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The origin of (13) was just to the west of city K, the exact location of which was not important for the analysis of this problem; x measured distance to the east, and positive values of 
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were in hundreds of meters.  The path elevation was modeled by
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where again x and 
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were in hundreds of meters.  Straight sections of track through cities K and L connected the winding modeled path.  The existing straight track through city K was given by

x(s) =0.5 + 2s
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y(s) = 1.024 – 3s
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z(s) = c,
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and the existing straight track through city L was given by 

x(r) = 3.5 + 1.5r




(18)

y(r) = 1.024 + 0 .75r




(19)

z(r) = k.





(20)

Here, c and k are constants.

In this requirement, students had to perform the following: 1) separately plot 
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; 2) find parametric equations that represented the 3-D path of the track and then plot this 3-D path; 3) determine the grid coordinates where the new section of track intersected the straight sections of track at cities K and L; 4) find the altitudes for tracks K and L; 5) find the length of track needed to build the proposed track between cities K and L; and finally, 6) give a recommendation for option 1 or option 2 with an appropriate justification.

Students used Mathcad to graph functions of 
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as shown below in Figures 3 and 4.  Although not a requirement, we included a projection of 
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 onto the yz – plane in Figure 5.


                 


        Figure 3  Projection onto the xy – Plane

Figure 4 Projection onto the xz – Plane
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     Figure 5  Projection onto the yz – Plane

The projections of the route onto different planes contribute to the understanding of the route.  The projection onto the xy – plane (Figure 3) is looking at the route from above and shows that the route goes back and forth across the side of the mountain.  The projection onto the xz - plane (Figure 4) shows that the route increases in elevation throughout most of the path.  The projection onto the yz - plane (Figure 5) displays the change in elevation as the track winds in the north / south direction.

To find the parametric equations, students let 
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, respectively.  Thus, one acceptable set of parametric equations for the 3-D path was   
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As mentioned previously, the origin of their 3-D coordinate system was just to the west of city K; x-coordinates measured distance to the east/west, y-coordinates measured distance to the north/south, and the z-coordinate reflected elevation.  Figure 6 contains a 3-D plot for this proposed train track connecting the two cities between the origin and an arbitrary point at  t = 3.5; note that at this time we do not know exactly where along the path cities K and L lie.  





Figure 6  Proposed Track Route

To find the location of city K, the students solved equations (15)-(16) and (21)-(22) simultaneously, obtaining (s,t) = (0, 0.5).  Substitution into (21)-(23) then yields that city K is located at (0.5, 1.024, 1.691).

To find the location of city L, the students solved equations (18)-(19) and (21)-(22) simultaneously, obtaining (r,t) = (1.118, 2.382).  Substitution into (21)-(23) then yields that city L is located at (2.328, 0.465, 2.258).  Thus, the interval for the parameter t is seen to be
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The arc length of this track can be determined using the relationship
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where (21)-(23) represent x(t), y(t), and z(t) respectively, and a and b are the limits on t, 0.5 to 2.382.  The length of the section of train track was determined to be 4.015 (in hundreds of meters).

Students can justify either option with a little creativity.  The first option uses a lot more track than the second option (miles versus hundreds of meters), but should be considerably less expensive to construct because the terrain is flat.    
3.5 Requirement Three - Curvature Analysis

Most students recommended the first option.  However, in the third requirement we asked the students to analyze the second option a little further by completing the following: 1) determine the curvature of the track through the mountains to determine if a locomotive could navigate the route; 2) graph the curvature function with t ranging from 0 to 3.5; 3) given that the maximum curvature an engine can negotiate is five, determine any approximate range(s) of t for which the engine cannot travel; and 4) explain why the local maximums of the curvature function are at different heights.  

To do the above, students first had to find the curvature as a function of t. The curvature function, ((t), can be defined as
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The x, y, and z components of the position vector are given by (21)-(23).  The velocity and acceleration vectors are the first and second derivatives of the position vector, respectively.  

The graph of the curvature function, ((t), is shown in Figure 7.  The dashed line in Figure 7 is our self-imposed curvature limit where C(t) equals five.  Like Figure 3, Figure 8 depicts the graph of the east / west path of the track given in (13).  It is shown here again so it can be easily compared to ((t).
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Figure 7  Curvature Function
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Figure 8  East / West Direction

The maximum curvature allowed for train track depends on the locomotive and the type of train that will travel on it, for example, cargo or passenger.  We chose five as a suitable curvature in this problem.  Examining the graph in Figure 7 closely, the students found that the curvature exceeds five (the dashed line) for the following approximate intervals of t: (0.60 to 0.74), (1.23 to 1.40), (1.94 to 2.06), (2.60 to 2.74) and (3.27 to 3.36).  This is consistent with the fact that the sine function in (13) has sections of large curvature at the places where the sine curve changes direction.  In other words, it is consistent that the peaks and valleys of the sine curve correspond directly to the peaks of the curvature function; this can be seen when comparing Figures 7 and 8.   

The reason there is a decrease in the local maximums of the curvature function as t increases, or as we proceed up the hill, can best be explained by an example.  Picture a slinky lying in the xy - plane.  If you lift the center of the slinky a foot above the ground, the winding of the slinky is stretched over a greater distance; thus the curvature becomes less along every point where the slinky has been stretched.  The projection of the track onto the yz - plane (Figure 5) pictures this idea the best.  Following the track from the start, one notices that there is very little change in elevation through either of the first two turns (this would be as if the slinky was not stretched much); thus, these first turns have a large curvature and can be seen in the two maximums on the curvature graph (Figure 7) when t is around 0.6 and 1.4.  As the track proceeds up the hill through the next two turns and then through the curve that begins the descent, there is a significant change in elevation, hence a lower curvature.  

After conducting this curvature analysis, the students realized that the proposed track between cities K and L required a lot of restructuring because of the curvature constraint.

3.6 Requirement Four - Angle of Grade Analysis

We then asked the students to analyze the grade of the track path to see if the path of the track would require additional excavation and leveling; grade is defined to be the angle the track makes relative to the horizon.  Specific requirements for this portion of the project were as follows:  1) find and graph the function that models the angle of grade for the path; 2) assuming that most locomotives can climb a maximum grade of 30 degrees and travel is considered unsafe if locomotives descend at an angle greater than 15 degrees, determine the intervals for t when excavation and leveling would be necessary; and finally, 3) relate how the graph of the angle of grade is related to the graph of the track’s path.  

To do this problem, the students were given the hint to use the dot product between the tangent vector to the path and the unit vector in the k-direction.  The angle between the two vectors can then be solved for by utilizing the relationship
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where the velocity vector is the same as in (26).  The angle of grade, which is the angle between the tangent vector and the horizontal, is
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The factor 
[image: image52.wmf]p

180

 converts the measure from radians to degrees.  See Figure 9 for the relationship between the angle of grade and 
[image: image53.wmf]q

.






[image: image54.wmf]
   


         Figure 9  Relationship of Angles

Few students were able to get this relationship without a little assistance from the instructors.  The graph of the grade angle function is shown in Figure 10.  For comparison, the graph of the elevation function, given earlier as (23) and shown in Figure 4, is also plotted below in Figure 11. 
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     Figure 10  Grade Angle 
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Figure 11  Elevation

Positive values in the grade function correspond to areas that are uphill and negative values to areas that are downhill.  Both of the graphs in Figures 10 and 11 show that the track traverses uphill when t increases (when traveling from west to east).  As can be seen in Figure 11, there is virtually no change in elevation from approximately t = 0.8 to t = 1.2; during this period it can also be seen that the angle of grade is approximately zero.  At about t = 1.6, the track begins to climb in elevation; this can be seen on the graph in Figure 11 and in Figure 10 where the grade angle function is now positive.  When t = 2, the track is the steepest along the route with an angle near 30 degrees.  Since the angle of grade function is positive throughout the limits on t (t = 0.5 (city K) to t = 2.382 (city L)), there are no downhill portions along the proposed route.  

According to the graph in Figure 10, the only time that the locomotive must ascend at grades greater than 30 degrees when traveling from west to east as t increases is when t is between 0 and 0.1.   Also, the only time that the locomotive must descend at an angle greater than 15 degrees when traveling from west to east as t increases is when t is greater than 3.25.  However, the original limits on t were identified to be between 0.5 and 2.382; these parameters are where the track through the mountains intersected cities K and L.  Therefore, when traveling from west to east as t increases, no path adjustment for track angle in the ascent or decent is necessary.  

The conclusion that no path adjustment for track angle in the ascent or decent is necessary is not valid when traveling in the opposite direction.  When traveling from east to west or when t decreases, the graph in Figure 10 inverts itself on the horizontal axis.  One can see in Figure 10 that between t = 0.5 and t = 2.382, the curvature exceeds 15 degrees between approximately t = 1.8 and t = 2.2.  Thus, when traveling from east to west, excavation and leveling would be necessary because of the angle of grade.  No students analyzed this direction of travel.

The angles used in our analysis, 30 degrees and 15 degrees, are extremely steep.  In retrospect, we should have had our students use a more realistic angle of 3 degrees.  Given this angle, the proposed track route would be angled at less than 3 degrees only in the interval 
[image: image57.wmf]2

.

1

8

.

0

£

£

t

.  Thus, the conclusion is the same regardless of whether 3, 30, or 15 is used; in order to travel in both directions along the track, the proposed track route requires modification because of its angle of grade.

4. Challenges in Designing this Project 

As mentioned in the beginning of this paper, one of the first steps in creating a project is to decide the skills to be exercised.  This can be deceptively difficult.  It is very tempting for an author of a project to include so many topics that the project becomes infeasible for the students to complete given the time constraints.  The other extreme is not to have enough topics and as a result, the project does not challenge the students.  An author should have other instructors in the course complete the project from start to finish not only for general proofing but also for seeing if the scope of the project, both the level of difficulty and the length, are acceptable.

One of the toughest challenges of this project was deriving a set of parametric equations that represented a path through the mountainous terrain such that students could easily see on a graph the changes in direction and elevation.  Indeed, our end result in (21)-(23) was much steeper and more curved than actual train routes.  However, we do not feel this affected the realism of the project in that the students had the opportunity to recommend as a consultant either for or against a proposed track route based on the path’s curvature and angle of grade.

When plotting the graphs in the project, we required the students to use values of t from 0 to 3.5.  Picking this range was not trivial for it allowed students who obtained the incorrect intersection points for cities K and L to still be able to analyze the graphs in Figure 3 through Figure 8.  For example, a student might incorrectly solve the parametric equations given earlier and obtain t = 0.2 and s = 0 instead of the correct solution t = 0.5 and s = 0.  Even if students did this, they would still be able to analyze all of the graphs over the range of 0 to 3.5 that we asked them to plot.  We found in the past that if we did not specify a range, some students graphed an unusually large range for t.  Then, it was difficult to complete the visual analysis we required of them in the project.  

Another challenge we had with this project was to ease the students up the learning curve for the software program, Mathcad.  Throughout the course we showed them the software skills they would need on the project so they would not spend a lot of time learning the program as they were working on the project.  To do this we developed a set of “fundamental” Mathcad skills.  We reinforced these skills during the lessons that were applicable through graded short homework exercises and a computer lab.  As a result of this emphasis, we found that less time was spent on learning the software program and more time on applying and exploring the mathematics.  This was indicated by the average number of hours the students told us they spent on the project.  In the previous semester, when we did not cover the Mathcad skills, we found that the students spent an inordinate amount of time learning the software program.

5. Was the Project Successful?

So how did we do in accomplishing our goals?  The students were very excited about seeing an application of their newly learned mathematical skills in solving real world problems.  This was evidenced by their feedback on the end of the course surveys.  The students definitely gained a more in-depth understanding of the concepts that were taught in the classroom.  This was shown by the fact that on the portions of the exam covering the related material, the students did well.  The students also gained an appreciation for the benefits of using technology in solving application problems.  Solving the required system of equations, finding the curvature function, and particularly the graphing, all would have been quite difficult by hand.  Also, students found that they could easily answer “what if” sensitivity questions by just changing numbers in their program.  An example of this might be if we asked how the answers to the requirements we posed would change if the parametric equation that measured distance to the north /south in (22) was instead 
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6. So We Have Convinced You

For those considering putting together a similar project for their students, here are a few recommendations:  

1)  M
otivate your students to learn the software package they will need to use on the project before you hand it out.  Also, be sure to cover any nuances in the software program in class.  All of this will save the students a lot of time and frustration when they are doing the project.  The bottom line is that come project time, we want them to focus on the mathematics and not on the software syntax. 

2)  Have defined milestones or turn-in dates so that you can provide guidance to those who are not on the right “track,”
 and encouragement for those who are on the right “track.”  Otherwise, you may find many students who do not complete as much of the project as you would like simply because they either run out of time or just get lost. 
3)  Earlier we discussed that eight hours per student were allotted in the syllabus for this project.  Therefore, we expected groups to spend about 16 hours on their projects.  How did we determine eight hours?  We had instructors complete the project and time themselves.  We usually use a 3:1 ratio, three student hours to one instructor hour.  Caution must be used here because when most instructors complete a timed solution on a project, few will complete the writing requirement.  Often this can take the students more time than solving the mathematics.  This leads to another recommendation: clearly define what the requirements for the presentation will be and also, who the audience is.  For example, do you expect a table of contents, assumptions, conclusions, recommendations, or appendices?  If the audience is someone who is not familiar with mathematics, then the write-up will certainly be a lot different (and longer) than for someone who does have the background.

4)  Make the project as realistic and interesting as possible.  Students love it when they are able to solve problems with their newly learned skills, problems that are encountered by people in every day living.  Student productivity is definitely correlated to the realism of the project.  Students can “sniff out” in a heartbeat when something is contrived.  When they see this, they begin to believe that there really is no use for the mathematics they have learned.  So what makes a project realistic?  The scenario is the most obvious way.  We found two cities on the New York Transit Subway System that had different track routes through them but were not connected in any way.  Additionally, we introduced the project by bringing in a local civil engineer project manager as a guest speaker.  This was a huge hit.  Another idea for introducing a project might be a short film clip on the topic.  

5)  If possible, create some teaching aid that depicts the model being studied.  This will go a long way in helping students better visualize the model.  For our project we utilized two training aids.  As discussed earlier, one was a slinky.  The other was a piece of wire that we bent to look like the path of our train track.  Utilizing this wire, students could then easily visualize the ideas of curvature, angle of grade, and also tangent vectors.

6)  We have discussed a lot of ideas here to help out the students.  Let’s not forget about the other instructors who are also teaching the course and have not had any involvement in the development of the project.  A good way to include them in the development process is to have them do a timed solution.  This can help you determine mistakes, the time required to complete the project, and potentially confusing areas that need to be clarified.  Additional benefits are that these instructors become familiar and comfortable with the project and that you gain their support when you listen to their feedback.  

There are a few things you can do to help your instructors.  Instructors greatly appreciate a solution template.  This ensures that all instructors have similar expectations from the students.  Also, like the students, instructors need guidance on what to expect in their students’ report or briefing.  This ensures that all students in the course will be graded against the same standards.

7. Conclusions

Creating realistic problems that connect the world to the classroom is not an easy task.  However, there are some steps that one who is contemplating developing a project can do that might simplify the process.  First and foremost is to establish a specific set of goals for the project.  Next, and perhaps just as important, is to determine an appropriate number of skills to explore. 

The benefits of a successful project far outweigh the work that goes into project development and administration.  The students become excited about seeing an application of their newly learned mathematical skills in solving real world problems.  They definitely gain a more in-depth understanding of the concepts taught in the classroom and an appreciation for the benefits of using technology in solving application problems.  This paper outlined a successful project that we believe accomplished these in that it deepened the students’ understanding and appreciation of the power of mathematics to solve real world problems, and solidified their understanding of the concepts that they learned.  
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� Kobylski G., Farmer, W., and Berkove, E., Computer Algebra Systems in Education Newsletter, number 38, February 2001, pp. 1-3.


� � EMBED Equation.3  ���is known as a transfer curve.  This part of the project was motivated by the transfer curve problem in the Chapter 14 review problems of James Stewart’s Calculus, 4th edition, Brooks/Cole Publishing Company, Pacific Grove, CA,1995.
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