AN ANALYSIS OF THE (COLORED CUBES)? PUZZLE
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ABSTRACT. Start with a collection of cubes and a palette of six colors. We
paint the cubes so that each cube face is one color, and all six colors appear
on every cube. Take n3 cubes colored in this manner. When is it possible to
assemble these cubes into an n X n X nlarge cube so that each face on the large
cube is one color, and all six colors appear on the cube faces? For the 2 x 2 x 2
case we give necessary and sufficient conditions for a set of eight cubes to have
a solution. Furthermore, we show that the (colored cubes)® puzzle always has
a solution for n > 2.

1. INTRODUCTION

There are many problems in mathematics that are inspired by games and math-
ematical recreations. This paper is the result of our investigation into a relative of
a solitaire game known as Instant Insanity!. This popular game, marketed in the
late 60’s by Parker Brothers, consists of four cubes, each of which is colored in some
way with four colors. The goal of Instant Insanity is to stack the four cubes into a
4 x 1x 1 prism so that each of the four colors appears on each 4 x 1 face of the prism.
Although tame when compared to today’s world of complicated electronic gadgets
and realistic video games, Instant Insanity still remains an interesting diversion for
people who like to get their hands on a puzzle for a change.

The Instant Insanity puzzle has the added (mathematical) advantage that it
can be solved using an elegant and elementary application of graph theory. Treat-
ments of the solution can be found in classic references, such as Chartrand’s Graphs
as Mathematical Models [1], or in more contemporary textbooks like Tucker’s Ap-
plied Combinatorics [6] and van Lint and Wilson’s A Course in Combinatorics [7].
However, this puzzle also has unexpected depth; Robertson and Munro were able
to show that a generalization of the game, with n cubes and n colors, is an NP-
complete problem [5]. Another version of Instant Insanity with different Platonic
solids was also studied by Jebasingh and Simoson [2].

The version of the game we consider, the (colored cubes)® puzzle, uses (as the
name suggests) many more cubes. Given n? cubes, the puzzle is solved if the cubes
can be stacked into an n X n X n cube so that each n x n face is colored a single
color. This can be a considerable challenge. Since each cube can be placed in any

one of 24 orientations, even the 2 x 2 x 2 puzzle has % = 1.85 x 10** possible
configurations. Perhaps surprisingly, the 2 x2x 2 case is the only one which does not
always have a solution. Since (n — 2)? cubes are “invisible” and another 6(n — 2)?
contribute only one face to the solved puzzle, the puzzle becomes easier to solve as

n increases. We introduce the frame of the puzzle, consisting of the cubes on the
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corners and edges of the puzzle. The frame contains the n® — (n —2)3 —6(n—2)? =
12n — 16 cubes that must be placed in a non-trivial way in a solution. As the
number of cubes available to fill the frame is n®, this suggests that the (colored
cubes)? puzzle should become easier to solve as the value of n increases.

Our main theorem is that the (colored cubes)® puzzle always has a solution for
n > 3. The proof is in two parts: we first show that when we can find a 2 x 2 x 2
solution of eight cubes out of the n for the corners of the puzzle, then we can
always complete the puzzle’s frame when n > 3. Next, we show that as long as
there are 27 cubes, we can always find a 2 x 2 X 2 solution. Along the way, we
construct a set of 22 cubes with no subset forming a 2 x 2 x 2 solution. As every
n X n X n puzzle contains a 2 X 2 X 2 sub-puzzle at its corners, this result suggests
that a solution to a 3 x 3 x 3 puzzle, at least, might be quite hard to find. Indeed,
showing that the case n = 3 has a solution is the most involved result in this paper.

We remark that our version of this problem is not entirely new. A variation of
the problem was asked as early as 1921 by Percy Alexander MacMahon, a major
in the British Army, in [4]. Major MacMahon started with a collection of the 30
possible distinct cubes colored with six colors and constructed particularly nice
2 x 2 x 2 solutions. Other similar problems can be found at a web site run by
Jirgen Koller [3].

We lay out this paper as follows: In the next section, we give background to
the (colored cubes)® puzzle and introduce the definitions and terminology we use
throughout the paper. In section 3, we describe a necessary and sufficient condition
for eight cubes to have a solution. We then show that the solution to our puzzle for
n > 2 is completely dependant on a solution for the corner triples. In section 4, we
show how to construct a corner solution when n = 3. This also implies a solution
for n > 3. In the final section, we describe how the puzzle can be generalized,
and give some open questions. We hope to convince the reader that the (colored
cubes)? puzzle, analyzable with standard combinatorial tools, still has a lot of room
for further investigation.

2. BAsic NOTIONS AND BACKGROUND
Definition 2.1. A colored cube is a cube whose faces each have a distinct color.

In this paper we will always assume that there are only six colors, so every color
appears on every colored cube. One cube is considered equivalent to another if it
is possible to apply a rigid motion in R3 to the first cube so that its face colors
coincide with the second. In particular, two cubes related by a mirror operation
are not equivalent.

Definition 2.2. The equivalence class of cubes under the preceding equivalence
relation is called the variety of colored cube.

When it is clear from context, we will occasionally refer to both a cube and its
variety as c. Under our assumptions there are 30 varieties of colored cubes. This
is not hard to see: pick some distinguished color to be the front face. This leaves
five choices for the back face, and 3! choices for the remaining four faces. We next
define the problem we solve in this paper.

Definition 2.3. A (colored cubes)® puzzle (or n X n x n puzzle) is an arbitrary
set of n® colored cubes of the same size. These colored cubes can be of any variety.
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A solution to an n X n x n puzzle is an arrangement of the colored cubes into an
n X n X n cube where each n X n face is a solid color and all six colors appear on
the outside of the cube.

We note that the n x n X n cube created in an n X n X n solution is a scaled-up
version by a factor of n of some 1 x 1 x 1 colored cube. Thus, it is natural to define
the following:

Definition 2.4. A solution cube is said to be modeled after a colored cube if its
faces have the same coloring, up to rigid motion, as the colored cube. In other
words, the solution and its model are of the same variety.

A number of the arguments in this paper require information about the relative
position of cube faces. The next definitions identify the most important relation-
ships.

Definition 2.5. An opposite pair is an unordered pair of colors taken from opposite
faces of a colored cube. Similarly, an adjacent pair is an unordered pair of colors
taken from adjacent faces of a colored cube. A corner triple is an ordered triple of
colors which correspond to three faces taken clockwise about a corner of a colored
cube.

Two corner triples are equivalent when one is a rotation of the other. For ex-
ample, (1,2,4) ~ (2,4,1) £ (1,4,2). We say two corner triples are mirror image
corner triples if they contain the same colors but are not equivalent. Using these
definitions, we see that a colored cube has three opposite pairs, twelve distinct ad-
jacent pairs corresponding to its edges, and eight corner triples corresponding to
its corners. Since all six colors appear on any cube, we immediately see that any
two face colors are present in a colored cube either as an adjacent pair or as an
opposite pair.

We also identify a useful construction. Let ¢*, the mirror image cube of c, be the
colored cube obtained by central inversion on the cube ¢. (That is, swap the colors
on all opposite faces.) We can show that when two cubes share the same opposite
faces, they are either identical or mirror images of each other. Consider two cubes
that have the same opposite face pairs. Arrange the cubes so the same color face
is forward. Then the rear face colors also match. We next rotate the cubes about
the line through the center of the front and back faces so the same colors appear
on the left (and right) faces. There are now only two possibilities: either the top
and bottom faces match or they have opposite colors. In the former case, the two
cubes are of the same variety; in the latter, they are mirror images. This gives us
the characterization of ¢* as the cube ¢ with any opposite face pair swapped. We
also note that the corner triples of ¢* are mirror images of the corner triples of c.

When we compare cubes, we are usually interested in what components the two
cubes have in common. The next two lemmas show how the opposite pairs on two
cubes determine common adjacent pairs and corner triples.

Lemma 2.6. Two colored cubes share exactly nine, ten, or twelve adjacent pairs
according to whether they share exactly zero, one, or three opposite pairs, respec-
tively.

Proof. There are (g) = 15 unordered pairs of distinct colors, all of which appear in
every colored cube as adjacent or opposite pairs. Three of the pairs are opposite
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pairs while the rest are adjacent pairs. Colored cubes c¢; and ¢ may share zero,
one, or three opposite pairs, thereby giving six, five, or three distinct opposite pairs.
Subtracting these from the 15 total pairs yields the result. ([

Lemma 2.7. Given two cubes:

(1) If they have no opposite pairs in common, then they share zero or two
corner triples.

(2) If they have one opposite pair in common, then they share exactly two corner
triples.

(3) If they have three opposite pairs in common, then they share zero or eight
corner triples.

Proof. Given a variety ¢, we can describe the relation between ¢ and the other 29
varieties. Once we understand these relationships the results will follow. Some of
the 29 varieties can be constructed from ¢ by swapping the colors along some edge
of ¢. A cube has twelve edges, so this accounts for twelve varieties. Other varieties
can be constructed by choosing a corner triple of ¢, then cyclicly permuting the
colors on that corner triple. If one performs this process on corner pairs (fix a
corner triple and permute the corner triple opposite on the long diagonal of the
cube), three varieties, ¢ and two others, are generated. Therefore, eight varieties
besides ¢ (two for each corner pair) can be built in this way. In a similar manner,
there are another eight varieties that are the mirror images of the ones generated
by a corner permutation. The final variety of the 29 is c*.

We note that 29 varieties generated from c are distinct from c¢. The twelve
varieties generated from by swapping adjacent faces of ¢ share one opposite pair
with ¢, the opposite pair that remains unchanged after the swap. Each of these
twelve varieties also shares two adjacent corner triples with c. These are the corner
triples formed by the four faces whose colors remain fixed. The eight varieties
generated by cyclicly permuting a corner triple of ¢ share no opposite pairs with
c. However, these varieties do share corner triples, the permuted corner triple and
its opposite corner. The remaining six corner triples cannot be corner triples of ¢
as some two of their three colors are opposite in ¢. Similarly, the eight varieties in
the mirror image set also share no opposite pairs with ¢, as mirror images preserve
the color pairing. Furthermore, these cubes share no corner triples with ¢. Six of
the corner triples have the wrong colors, while the last two corner triples have the
wrong orientation. The final variety, ¢*, shares three opposite pairs with ¢ but no
corner triples; the colors are right, but their orientation is not.

To complete the proof, we show that the 29 varieties are also distinct from each
other. This can be most easily seen by comparing which corner triples each variety
has in common with c¢. Each of the twelve face-swapped varieties share two unique
adjacent corner triples with ¢. Two each of the eight corner-twisted varieties share
two corner pairs with ¢ and these two are clearly different from each other. This
implies that the eight mirrored varieties are also distinct from each other, and as
they share no corner triples with ¢ they are also distinct from the previous two
subsets. Finally, ¢* cannot be in any of the previous subsets as it is the only variety
of the 29 with three opposite pairs in common with c. ([
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3. SOLVABILITY OF AN 1 X n X n PUZZLE

The first non-trivial (colored cubes)? puzzle is the case n = 2. It is easy to
construct 2 x 2 x 2 puzzles both with and without solutions. For example, take
eight cubes of some variety c. Clearly, they can be stacked into a 2 x 2 x 2 solution
modeled after c¢. On the other hand, take seven cubes of variety ¢ and one of variety
c*. Since ¢* shares no corner triples with ¢, it cannot be used in a solution modeled
after c. There cannot be a solution modeled after any other cube either. By Lemma
2.7, ¢ shares at most two corner triples with any other cube, so at most two copies
of ¢ can be used in a solution not modeled after c.

The following theorem gives necessary and sufficient conditions for a 2 x 2 x 2
puzzle to have a solution.

Theorem 3.1. Let K be a set of eight corner triples from eight distinct cubes.
The corner triples of K can be arranged into a 2 X 2 X 2 solution if and only if the
following three conditions are satisfied:

(1) Each color appears as a face on exactly four elements of K.

(2) No two elements of K are mirror image corner triples.

(3) When the corner triples in K are decomposed into adjacent pairs, each
adjacent pair (a,b) occurs twice in the list, once coming from a corner
triple (a,b,c) and once from (b,a,d).

Proof. By considering an arbitrary 2 x 2 x 2 colored cube, it is easy to verify that
these conditions are necessary. For sufficiency, we need a way to keep track of eight
corner triples and their different faces. We number the eight component corner
triples as in Figure 3.1 which shows the top view of a “smashed cube.” Corner
triples 1-4 are on the top, listed in counterclockwise order. Right below them
are corner triples 5-8. In order to determine how the faces of the corner triples
interrelate, we use Figure 3.2, which shows the standard net of a cube. Numbers
in the subsquares refer to the corner triples in Figure 3.1. The letters refer to faces
of the 2 x 2 x 2 cube; U for “up,” L for “left,” D for “down,” R for “right,” B for
“back,” and F for “front.” For example, there are squares labeled 1U, 1B, and 1R.
This means that corner triple 1 contributes a face on the “up,” “back,” and “right”
faces of the 2 x 2 x 2 cube. We also note that in a 2 x 2 x 2 solution, we can think
of the letters as distinct colors.

28| 1B
5 6 58| 6B
2 1
10| 2uf 2| s.f| spb| ep| er| 1R
3 4
a)| asul su| 7] so| 7| 7R| 4R
8 7
8F | 7F
Ficure 3.1. 3F | 4F
Corner  Triple
Positions

FIGurRe 3.2.
Cube Faces
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Assume that we have a collection of eight corner triples as in the statement of the
Theorem. Let any one of the corner triples, appropriately placed, be corner triple 1,
and let U, B, and R be the triple’s three colors. By condition 3, there is exactly one
other corner triple with the colors UB. We place this triple in position 2 so that the
colors match with those on triple 1. The color of 2L must be distinct from 1R as no
two corner triples are mirror images by condition 2. Using an identical argument
we can place the corner triple containing colors UR into position 4 with the colors
4F and 1B distinct. Further, we claim that colors 2L and 4F are also distinct.
For if they are the same, we have found the two corner triples with adjacent faces
with colors U and F. By condition 1, there is one more corner triple with a face
color U. By condition 3, when that corner triple is decomposed, it must generate
two pairs UC and CU, where C is some color. This implies that the corner triple’s
colors are UCC, which contradicts our definition of colored cube. Since F and L
are distinct colors, there is one more corner triple with U as a face, and with UF
and UL as adjacent pairs. By condition 3, it has the appropriate orientation to fit
into condition 3. This completes the top layer.

By condition 3, there is exactly one other corner triple with colors LB, which we
place in position 5. By the mirror image condition 2, the third color on corner triple
5, color D, is distinct from U. We can now place corner triples 6 and 7 appropriately
by condition 1 (to identify the corner triple), and condition 3 (to insure that the
remaining colors on the corner triples match the colors that have already been
placed. The last corner triple fits into position 8 by condition 3. O

One can use the criteria in Theorem 3.1 to obtain an empirical estimate of the
frequency of solutions in the 2 x 2 x 2 puzzle; by checking through a few thousand
random cases we found a 2 x 2 x 2 solution just over 50% of the time.

There are also other situations when we can say something about the existence
of a 2 x 2 x 2 solution. For example,

Lemma 3.2. Given any set of 15 colored cubes, all of which share one opposite
pair, then there is a subset of eight cubes that forms a 2 x 2 X 2 solution.

Proof. Without loss of generality, let white and black be the colors in the distin-
guished opposite pair. We note that there are a total of six different cube varieties
with white and black faces opposite. The six varieties can be further split into
three pairs, each consisting of a variety and its mirror image. From Lemma 2.7, we
know that two distinct cube varieties with the same opposite pair are either mirror
images of each other or differ by a swapped adjacent pair. Two varieties from the
set of six share corner triples if and only if they differ by a swapped adjacent pair,
and the two matching corner triples are the ones formed by the four faces whose
colors agree. In particular, only a variety and its mirror image have no corner pairs
in common.

Given an arbitrary set of cubes with an opposite face in common, let ¢ be a
cube with the highest repetition number. If cube ¢ occurs seven times, then any
other cube besides ¢* shares two corner triples with ¢ by Lemma 2.7. That cube
and the seven copies of ¢ can be assembled into a 2 x 2 x 2 solution modeled after
c. Therefore, the largest incomplete set consists of seven each of ¢ and ¢*. At the
other extreme, assume that the cube ¢ occurs only twice. We note that once there
are four cubes of the six that occur twice then there is a solution. Consider a cube
¢ from the six varieties whose mirror image does not occur twice. It will share
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two corners with each of the four cubes that occur twice. Since the four pairs of
corners are distinct, they can be used to form a 2 x 2 x 2 solution modeled after
c’. Similarly, if three of the six varieties occur twice and the other three occur only
once then there is also a 2 x 2 x 2 solution. There are nine cubes total, and there
will be a solution modeled after the cube whose mirror image only occurs once. On
the other hand, the reader can check that there are collections of eight cubes where
no variety occurs more than twice without a 2 x 2 x 2 solution.

Using analogous arguments, we can determine that the maximal sizes of in-
complete sets where cube ¢ occurs (6,5,4,3) times is (13,13,12,12). The result
follows. O

The 2 x 2 x 2 solution is particularly important because every solution to a
n X n X n puzzle starts with a 2 x 2 x 2 solution in its eight corner cubes. Once
the corner solution is found, we need to find cubes to fill the remaining open edge
positions. The solution requires twelve distinct subsets of n—2 cubes, one subset for
each edge. The cubes in each subset must all have the appropriate adjacent pair for
that edge. If these can be found, then the puzzle is solved. The remaining cubes
that are visible have only one face showing, and since all colors appear on each
cube, any cube oriented in the proper manner can fill those places. The orientation
of the cubes that make up the (n —2) x (n —2) x (n — 2) interior does not matter.
These observations motivate the following definition:

Definition 3.3. The frame of an n X n X n puzzle consists of the eight corner and
12(n — 2) edge cubes of the puzzle.

A puzzle is solved once its frame is solved. Since the number of puzzle cubes
grows as n> while the size of the frame grows as n, the n x n x n puzzle should
become easier to solve as n increases. However, there is still some work to do to
show when there is a guaranteed solution to the frame. The next two results show
that once a 2 x 2 x 2 solution has been found, it is always possible to solve the
frame (although not necessarily in a way that uses the 2 x 2 x 2 solution).

Theorem 3.4. A 3 x 3 x 3 puzzle has a solution if it contains a subset with a
2 X 2 X 2 solution.

Proof. Once a 2 x 2 x 2 solution is found, it is sufficient to complete the frame of
the cube in order to finish the 3 x 3 x 3 puzzle. In other words, if twelve of the
remaining 19 cubes can be oriented and placed along the edges in such a way that
all the colors line up, then there is a solution to the 3 x 3 x 3 puzzle. We assume that
this is not the case, so that there is no possible way to complete the frame given
the initial 2 x 2 x 2 solution. We will show that eventually this situation always
yields another 2 x 2 x 2 solution for the corner triples that can be completed.

Start with a 2 x 2 x 2 solution for which there is no corresponding edge solution.
Label the 12 adjacent pairs as ey, ea, ..., e12. Let ¢; be the number of cubes, out of
the 19, in which e; appears. Without loss of generality, we may assume the adjacent
pairs are labeled so that the sequence {¢;} is in ascending order.

We note that if ¢; > 4, then there is always a set of twelve cubes which can be
used as a matching for the twelve adjacent pairs needed for the frame’s solution.
If there is no solution, then there must be some largest j with ¢; < j. In a worst
case, for every i < j, ¢; = j — 1, and for every ¢ > j, ¢; = 19. In other words, we
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have the inequality

12

doa <G -1+ (12-5)(19).

i=1

On the other hand, 19x9 < leil ¢;, as two cubes always have at least nine adjacent
pairs in common by Lemma 2.6. If we combine the inequalities and solve for j over
the integers, we find that j < 3 or 5 > 17. The latter case cannot occur as j < 12.
Therefore, if there is a solution for the corner triples that cannot be completed to
a solution for the frame, it occurs because there are at most three adjacent pairs
with insufficient representatives. We will cover this situation in cases:

Case 1: Assume that ¢; = 0. This means that there is an adjacent pair that does
not occur in the collection of cubes. As a result, the two colors making up the
adjacent pair, say black and white, are opposite in these 19 cubes. Therefore, by
Lemma 3.2 there must be a second 2 x 2 x 2 solution for the corner triples with
black and white opposite. We still need to show that we can find adjacent pairs to
complete the solution. Label the twelve adjacent pairs in the corner solution and
their number of occurences as above. Of the 19 cubes, 11 are not used in the second
2 x 2 x 2 solution. As black and white are opposite on these cubes, they have at
least ten adjacent pairs in common with the 2 x 2 x 2 solution by Lemma 2.7. We
also have the 8 cubes from the original 2 x 2 x 2 solution, which may share as few
as nine adjacent pairs with the new 2 x 2 x 2 solution. We get another inequality,

12
Bx9+11x10< ) e < (4)(F — 1)+ (12— 4)(19),

i=1

which has a solution over the integers when j < 2. The only ways now that the
frame can fail to have a solution is if either ¢; = 0 or if ¢; = ¢3 = 1 and contributions
to eg and e; come from the same cube.

For the second 2 x 2 x 2 solution, assume again that ¢; = 0. Then the second
collection of 19 cubes lacks the same adjacent pair, and that pair must be opposite
on the 19 cubes. Note also that the adjacent pair cannot be black and white as
the second 2 x 2 x 2 solution has black and white opposite . Therefore, 11 of the
19 cubes actually share three opposite pairs, so they have the same adjacent pairs
by Lemma 2.6 and at least six of them are identical. Assume, for a moment, that
of the remaining eight cubes out of the 19, at least two share corners with the six
identical cubes. Use these to build a third 2 x 2 x 2 solution. Use the eight cubes
from the second 2 x 2 x 2 solution and any other cube to fill in nine edges of the
frame. There are still four cubes remaining that have the same opposite pairs as
the corner solution, which guarantee that the frame can be completed.

What if no cubes share two corners with the third 2 x 2 x 2 solution? By Lemma
2.7 this can only happen if those cubes are the mirror image of the 2 x 2 x 2 solution.
In this case, it is straightforward to pick a corner solution and complete the frame.

Finally, we note that if c; = co = 1 and contributions to ey and e; come from the
same cube, then the 18 remaining cubes lack the same two adjacent pairs. There-
fore, these pairs must be opposite and the 18 cubes have the same three opposite
faces. There are only two such cubes, so the pigeonhole principle guarantees that
at least nine are identical, and the rest of this case follows as above.
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Case 2: Assume that ¢ = 1. Then we can assume that ¢; = 1 and that the
contributions to e; and ey come from the same cube. This situation was covered
in the previous case.

Case 3: Assume that c¢g = 2. Further, we can assume that ¢; = ¢ = 2. The only
way that the frame can fail to have a solution is if e1, e2, and es occur on the same
two cubes. In this situation there are 17 cubes that have the same three opposite
faces. There are only two such cubes, at least nine are identical, and the rest of

this case follows as before.
O

Theorem 3.5. An nxnXxn puzzle with n > 3 has a solution if it contains a subset
with a 2 X 2 x 2 solution.

Proof. The argument is analogous to the proof of Theorem 3.4. Assume that there
is a 2 x 2 x 2 corner solution that cannot be completed to a solution of the n xn xn
frame using the remaining n® — 8 cubes. Define, as before, e; and c;, although
this time ¢; is the number of cubes, out of the remaining n® — 8, in which the pair
e; appears. If necessary, reorder the adjacent pairs so the corresponding c; are
arranged in increasing order. A sufficient condition for a solution is ¢; > (n — 2)i
for all 7, so denote by j the last place where this condition fails. We then have the
following inequalities:

12
(n® =8) x 9< Y e < (j)((n—2)j — 1) + (12— j)(n® — 8).
1=1

The outside inequalities can be converted to an equality which is quadratic in j. It
has solutions

. —74+n3+ V=143 +96n + 10n3 — 12n% 4+ nb

)= —442n '
The larger solution grows without bound, and is always greater than 12 for n > 3,
whereas the smaller solution decreases to 3 as n increases, and is always smaller
than 4 for n > 3. As a result, j = 3 is the largest value for which it is possible
for ¢; < (n —2)j to hold. We conclude that when the n x n x n frame cannot be
completed from a 2 x 2 x 2 corner solution, there is some adjacent pair which appears
no more than 3(n—2)—1 = 3n—7 times. The remaining n®—(3n—7)—8 = n*-3n—1
cubes have these colors on opposite faces.

There are only six varieties which share one pair of opposite faces. Partition
this set into three subsets, each containing cubes of a variety and its mirror image.
As n3 — 3n — 1 > 45 is always true for n > 3, there is one subset that contains
at least 15 members, which in turn implies that there are at least eight cubes of
one variety, say c. The eight copies of ¢ become the new 2 x 2 x 2 corner cubes.
At least 9(n — 2) of the remaining edge positions in the puzzle can be filled in at
random, as any cube shares at least nine adjacent pairs with the solution cube.
Fill these edge positions using cubes of any variety except ¢ and ¢*. To finish the
argument, we note that there are at most 3(n — 2) = 3n — 6 adjacent pairs left to
fill to complete the frame. By Lemma 2.7, these pairs all appear on both ¢ and c*.
As m2=3n=l 5 3, 4 9 = (3n — 6) + 8 when n > 3, there are enough copies of ¢ and

3
c* to fill in the outstanding edge positions as well as the corners. O

Corollary 3.6. A n X n x n puzzle always has a solution for n > 6.
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Proof. By the extended pigeonhole principle, we need 7 x 30 + 1 = 211 cubes in
order to guarantee at least eight colored cubes of one variety. This will always
happen when n > 6. ([

4. A SOLUTION TO THE 3 X 3 x 3 PUZZLE

In the previous section, we showed that when a (colored cubes)® puzzle has a
2 x 2 x 2 solution for the corners, the rest of the puzzle can be completed. In this
section, we show that every collection of 27 cubes contains a 2 x 2 x 2 solution. It
would be desirable to have a succinct proof of this fact, but so far this has eluded us.
Instead, we were able to write some Mathematica code to check a number of basic
cases. This computational lemma provides enough structure to finish the result.

Lemma 4.1. Given the following sets of cubes, one can always find a subset of
eight that forms a 2 x 2 x 2 solution. (A k-tuple refers to the number of times each
cube variety appears in the set.)

o seven distinct doubles.

o six distinct triples.

e five distinct 4-tuples

o four distinct 6-tuples.

o three distinct doubles and two distinct 4-tuples.
o two distinct doubles and two distinct 6-tuples.

Proof. This lemma was verified case-by-case using an exhaustive search in Mathe-
matica. ]

We should say a bit about the way the Mathematica search was performed. We
used a 30 x 40 matrix of 0’s and 1’s as the data structure; rows corresponded to
the 30 cube varieties and columns corresponded to the 40 different corner triples.
The (i, 7)th entry in the matrix was non-zero when the ith cube contained the jth
corner triple. The algorithm looked at all distinct k—subsets of varieties of cubes
and determined the corner set—the set of corner triples that were represented
by this subset. Then the algorithm determined if the corner set contained eight
corner triples from any of the 30 possible cubes. (The check was slightly different
depending on whether the cube being considered was a member of the subset or
not.) It was important in our algorithm to assume that each distinct variety in the
subset had a least two representatives. Since two varieties share up to two corner
triples, this assumption guaranteed that both shared corners would be filled by a
given variety. A variation of our algorithm could be developed for subsets that
include varieties with a single representative cube, but the modified code would
need to confirm that in a potential solution each corner triple could be represented
by a different cube. The first author has posted some of the Mathematica code used
in this paper on his web page for the interested reader.

We build on the cases listed in Lemma 4.1 to show that any arbitrary set of 27
cubes has a subset of eight cubes with a 2 x 2 x 2 solution. We will need some new
notation for the results that follow. We start with a notion of the most common
variety of cube in a set that we alluded to in Lemma 3.2. We make this a bit more
formal here.

Definition 4.2. Let r(c;), the repetition number of the variety c;, be the number
of cubes of variety c; in the puzzle.
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The cube variety with the greatest repetition number will figure prominently in
the rest of this paper, and we will refer to this variety as cps. It may happen that
more than one cube variety has the same maximal repetition number. In this case,
arbitrarily pick one variety.

Definition 4.3. Define C' to be the set containing cyr, iy, and the eight varieties
that share mno corner triples with cp;. Define C' to be the complementary set to C
in the set of the 30 possible varieties. Given a set of puzzle cubes, we let Vo be the
number of varieties in the puzzle that are in the set C'. Similarly, we let Vo be the
number of varieties in the puzzle that are in the set C'.

By Lemma 2.7, we know that the eight varieties in C' besides c)s and ¢}, are
precisely the varieties that share opposite corner triples (across the long diagonal)
with ¢};. We note that |C’| = 20, and that all cubes in C” share exactly two corner
triples with cpy.

Given n varieties in the set C’, it is natural to ask how close those n varieties are
to making a 2 x 2 x 2 solution modeled after cp;. Specifically, each variety in C’ can
be used in two possible positions in the model. However, different varieties may
share the same corner triple with cp;. As a result, it usually takes more than eight
varieties from C’ to make a solution modeled after cp;. We say that a subset S of
varieties from C” is a matching of size k for the corner triples of ¢y if k varieties
from S can be used for k corner triples of a 2 x 2 x 2 solution modeled after cyy.
The following lemma determines the minimal size matching for different values of
Veor.

Lemma 4.4. The table below gives the minimal size guaranteed matching on the
corner triples of cyr for various values of V.

Ver 1(2(3(4|5|6|7|8|>9
Minimal matching | 1 {2 |3 |4 |4|4[5|5|>6

Proof. In the graph in Figure 4.1, the vertices represent the eight corner triples
of ¢pz, as in Figure 3.1. For each variety ¢’ in ¢/, we draw an edge between the
two corner triples that ¢’ shares with cps. Recall from Lemma 2.7 that given two
adjacent corner triples in cps, there is exactly one other variety with those same
corner triples. Similarly, for opposite corner pairs there are exactly two varieties
that share those corner triples with cj;. Corner pairs appear in the graph below
as bold edges. Alternatively, one can consider Figure 4.1 as an weighted graph,
where edges corresponding to corner pairs have weight 2 whereas all other edges
have weight 1. We note that the graph is more commonly known as the complete
bipartite graph Ky 4.

To fill in the table in the lemma we determine, by observation, the minimal
number of vertices incident to Vv arbitrary edges in the graph. We use this con-
figuration to determine the minimal size of the matching. O

Corollary 4.5. If the size of the matching on the corner triples of cps is greater
than or equal to 8 — r(cpr), then one can construct a 2 X 2 x 2 solution modeled

after cpy.

Proof. Use the matching to fill in 8 — r(cps) appropriate corner triples on the solu-
tion. The r(cpr) copies of cpr can be used in the remaining r(cps) positions. O

We have a result with a similar flavor for the set C.
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1 2

FIGURE 4.1. Graph of Shared Corner Triples

Lemma 4.6. If Vo > 9, then there is a 2 X 2 X 2 solution.

Proof. The set C' contains the varieties cjs, ¢}, and the eight varieties that share
no corner triples with cj;. By Lemma 2.7, each of these eight varieties shares
two opposite corner triples with c},. Since Vo > 9, there are at least eight other
varieties in C' besides cps. If ¢}, is not one of these varieties, one each of the eight
varieties can be used to construct a 2 x 2 x 2 solution modeled after c3,. If ¢}, is
one of the varieties, then the seven other varieties can be used as a matching for
seven corner triples of a solution modeled after cj,;. A cube of variety c}, completes
the 2 x 2 x 2 solution, also modeled after c},. O

For the rest of this section we fix the size of the set of cubes at 27, the size of the
3 x 3 x 3 puzzle. The following lemma uses Lemma 4.1 and the number of varieties
of cubes (Vo 4 Vior) to determine solution criteria.
Lemma 4.7. Given 27 cubes, if

e r(cy) =2 and Vo + Ver <20
o r(cy) =3 and Vo + Veor <15
e r(cy) =4 and Vo + Veor <11

then there is a 2 X 2 X 2 solution

Proof. Separate the 27 cubes by variety and let cp; be a variety with greatest
repetition number. Let a, be the number of distinct varieties that appear in the
puzzle with multiplicity exactly n. Then Y a, = Vo + Ver and > na, = 27. By
subtracting the first equation from the second, we get the formula

(4.1) > (n—1)an =27 = (Vo + Vo).
If r(cpr) = k then we can rewrite Equation 4.1 as
(4.2) (az—i—...—I—ak)—i-(ag—l—...—I—ak)—l—...+(ak,1+ak)+(ak) = 27—(V0+VC/).

Notice that for 7 > 1, a; + a;j41 + ... + a are the number of cube varieties that
occur at least j times.
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Assume that r(cpr) = 2. Then from Equation 4.2, az = 27 — (Vo + V). By
Lemma 4.1, if as > 7 then there is a 2 x 2 x 2 solution, which is equivalent to
Vo + Vor < 20. Next, let r(cp) = 3. By Equation 4.2, (az + a3) + (a3) =
27— (Vo + Vor). By Lemma 4.1, if (a2 + a3) + (a3) > 12 then there is a 2 x 2 x 2
solution. Therefore,

12 < (ag + a3) + (a3) =27 — (VC + VC’)
or Vo + Vir < 15. The case r(cpr) = 4 is identical. O

Finally, we consider arbitrary sets of 27 cubes in cases according to the values
of r(cpr) and Vo + Vior. The last four results give criteria for solutions based on
the size of Vi, the size of Vi, and the sizes of Vo + Vv and r(cpr). These results
handle most cases, although on occasion, we also need to invoke Lemma 4.1.

Theorem 4.8. Given any set of 27 cubes, there is a subset of eight cubes that has
a2 X2 X2 solution.

Proof. If r(cpr) = 1, then Vo 4+ Vior = 27, which implies that either Vo > 9 or
Ver > 19. The result then follows either from Lemma 4.6 or from Figure 4.1 in
Lemma 4.4.

Next assume that r(cpr) > 2. If Vo + Ve > 17, then either Vo > 9 or Vior > 9. If
the former happens, there is a solution by Lemma 4.6. In the latter case, Corollary
4.5 implies the result. If Vo + Vior < 17, then the result follows for r(cpr) = 2 by
Lemma 4.7. Therefore, we may assume that Vo + Voo < 17 and r(c) > 3

Cases 15 < Vg + Vo < 16: If Vo > 9 we are done by Lemma 4.6. Otherwise,
Ver > 7, and Lemma 4.4 implies that there is a matching for at least five of cjps’s
corner triples. Since 7(cpr) > 3, it follows that there is a solution by Corollary 4.5.

Cases 11 < Vo + Vv < 14: By Lemma 4.7 there is a solution when r(cps) < 3, so
we can assume that r(cy) > 4. If Vo > 9 we are done by Lemma 4.6. Otherwise,
Veor > 3. If Voo > 4 is also true, then Corollary 4.5 yields a solution. Otherwise,
Vor =3, Vo + Veor = 11, and r(cpr) > 4. The result follows from Lemma 4.7 (if
r(ca) =4) and from Corollary 4.5 (if r(car) > 4).

Cases Vo + Vv < 10: These cases cannot be handled as cleanly as the previous
ones. Nonetheless, the result does hold by comparing the cases to the results in
Lemma 4.1. Specifically, we may assume that r(cpr) > 4 by Lemma 4.7. There
are some additional short cuts, although at this point it is also possible to simply
enumerate all partitions of 27 elements into ten or fewer subsets and check for the
existence of a solution case-by-case. Either way, one finds: when r(cpr) = 5, there
must be six distinct triples, seven distinct doubles, or three distinct doubles and
two distinct 4-tuples; when r(cpr) = 6 or 7(cps) = 7, then with four exceptions,
there must be six distinct triples, seven distinct doubles, three distinct doubles and
two distinct 4-tuples, or two distinct doubles and two distinct 6-tuples. In all these
cases Lemma 4.1 guarantees a 2 x 2 x 2 solution.

The four exceptions are the cases (7,7,7,1,1,1,1,1,1), (7,7,6,1,1,1,1,1,1,1),
(7,5,5,4,1,1,1,1,1,1), and (6,6,6,5,1,1,1,1), where the vector entries are the
number of cubes of each variety. These cases must be done ad hoc. Consider
(6,6,6,5,1,1,1,1), with r(cps) = 6. If any of the four varieties with repetition
number greater than one share corner triples, then there is a 2 x 2 x 2 solution.
Assume this does not happen, and that the 32 corner triples on the four varieties are
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all distinct. Of the remaining four varieties that each occur once (the singletons), if
any two of them share corner triples with one of the cubes with repetition number
six, or if any three of them share corner triples with the variety with repetition
number five, then we are done by Corollary 4.5. We claim that this must happen.
If not, then at most one of these singletons shares corner triples with the varieties
with repetition number six and at most two singletons share corner triples with the
variety with repetition number five. This implies that there are two singletons that
share no more than two corner triples with the entire set of four varieties of high
repetition number. As a result, these two singletons must have six corner triples
from the set of eight remaining corner triples. Therefore, they have at least four
corner triples in common, which implies that they must be the same variety, which
is a contradiction. For each of the other three cases r(cpr) = 7. If no variety shares
a corner triple with cps, then Vo > 9 and we have a solution by Lemma 4.6. O

This result implies our main theorem:

Theorem 4.9. A n X n X n puzzle always has a solution for n > 3.

5. FURTHER QUESTIONS AND OBSERVATIONS

To get the results in our paper, we had to prove two main results: once a 2 x 2 x 2
solution was found, there are always enough other cubes in the n x n x n puzzle
to complete the frame in some manner and hence complete the puzzle; and any set
of 27 cubes suffices to find the corner solution. It is an interesting question as to
when the frame can be completed using fewer than all n3 cubes. This motivates
the following definition:

Definition 5.1. The frame number of the n X n x n puzzle, f(n), is the minimal
number of cubes necessary to guarantee a solution to the puzzle’s frame.

In this language, our main result is
Theorem 5.2. Forn > 2, f(n) <n3.

How sharp is this result? The results in our paper show that 8 < f(2) < 27 as
the 2 x 2 x 2 puzzle does not always have a solution, but every set of 27 cubes has
a subset that forms a 2 x 2 x 2 solution. In fact, we can do a little better.

Theorem 5.3. 22 < f(2) < 27.

Proof. Tt is possible to find a set of five distinct varieties, no two of which contain
any corner triples in common. Take seven cubes of any three of the varieties and
one cube of another variety. There is no solution modeled after one of the four
varieties because the varieties share no corner triples. On the other hand, there
is no solution modeled after any other cube either, since each of the four varieties
would have to contribute exactly two corner triples to the solution, and one of the
varieties only has repetition number one. ([

In fact, we conjecture that f(2) = 23, although we have not been able to prove
this. Theorem 5.3 shows why we had to work so hard to find a 2 x 2 x 2 solution
in a set of 27 cubes; the set is very close to the minimum possible size where a
solution is guaranteed. We ask the following:

Open Questions:
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(1) What is the value of f(n)?
(2) How much can the bound f(n) < n® be improved?
(3) Is there a good lower bound for f(n)?

Weaker asymptotic versions of these questions can also be asked.

There is another related conjecture, motivated by the proof of Theorem 3.5 and
the open questions. In Theorem 3.5 we showed that in an n X n X n puzzle, a
solution for the eight corner triples implies some solution for the frame. By looking
carefully at the inequalities in the proof, one sees that many of them are fairly
crude. Perhaps they can be tightened enough to prove the following;:

Conjecture 5.4. For n sufficiently large, f(n) = 12n — 16.

As 12n — 16 = 12(n — 2) + 8 is the number of cubes in the frame, a positive
answer to this conjecture says that the (colored cubes)® problem “should” be stated
asymptotically as a statement about the frame of the cube. We note that a negative
answer to the conjecture would also be interesting, as it would give some information
about the complexity of the problem.

On a related note, in this paper we show that the puzzle has a solution for n > 3,
and for n > 6 the solution is modeled after one of the puzzle cubes. However, our
proof does not guarantee such a solution for arbitrary sets of cubes. For example,
take seven cubes each from the set of five distinct varieties mentioned in Theorem
5.3, no two of which contain any corner triples in common. These 35 cubes contain
a 2 x 2 x 2 solution that can be complete to a solution of a 3 x 3 x 3 puzzle, but
clearly it is not modeled after any of the cubes in the set. How long does this
happen? Specifically,

More Open Questions:

(1) Does the n x n x n puzzle have a solution modeled after a cube in the set
of puzzle cubes for n = 4,57

(2) For an n x n x n puzzle with n = 3,4, 5, how large a set of cubes is required
so that a solution to the frame is modeled after a cube in the set?

Our comments so far have dealt solely with the (colored cubes)® problem as
stated. There are other natural generalizations of our puzzle. One simply uses
more colors. One can keep the regularity condition (distinct faces have distinct
colors), or consider the problem with greatest generality where any coloring of a
cube is allowed. An implementation similar to the one mentioned after Lemma 4.1,
using more cubes and corner triples, might be helpful in these cases. Some readers
might have noticed a similarity between our implementation and a block design. In
fact, we initially considered analyzing the (colored cubes)? problem by considering
it as a block design. However, it is possible for two corner triples to never occur on
the same cube (the corner triples (1,2,a) and (1,2,b) with a # b, for example) so
the design is not balanced. Perhaps a more general version of the problem could
be described in terms of some balanced block design.

For other generalizations, one could also attempt a (concentric colored cubes)?
problem, where all of the concentric cubes must be solved in order for the puzzle to
be solved. Or, one could try the mind-bending version of the puzzle in dimension
d for d > 3. One would start with n? d dimensional hypercubes and a palette of 2d
colors. The solved puzzle would have 2d monochromatic faces.

We end with a remark about the running time of our puzzle algorithm. The
solution to our problem as stated is O(n) in the number of puzzle cubes. Briefly,
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one picks a subset of 27 cubes and finds a 2 x 2 x 2 solution (O(1)). Next, the
cubes have to be sorted into distinct varieties (O(n)). Theorem 3.5 describes how
to determine the cubes to be used for the frame (O(n) at worst). On the other
hand, in light of Robertson and Munro’s result, we would not be at all surprised
if the solution to the most general (colored cubes)? problem turned out to be, like
Instant Insanity, NP-hard. Clearly, there are a number of interesting questions
related to colored cube puzzles still to be investigated.
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