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1. Introduction

Fix a free product decomposition Γ = G1 ∗ G2 ∗ · · · ∗ Gn, where the Gi are
freely indecomposable groups, and fix an index i along with a non-identity element
gj ∈ Gj (allowing the possibility that i = j). Then the automorphism α

gj

i ∈ Aut(Γ)
induced by

α
gj

i (gk) =
{

gk if k 6= i
g

gj

k if k = i

(where gk ∈ Gk and g
gj

k is shorthand for conjugating gk by gj) is an elementary
Whitehead automorphism. The Whitehead automorphism group, Wh(Γ), is the
subgroup of Aut(Γ) generated by the α

gj

i . If none of the Gi are infinite cyclic, then
Wh(Γ) is the kernel of the map Aut(Γ) � Out(G1 × · · · × Gn). In particular, if
the Gi are finite, then Wh(Γ) is a finite-index subgroup of Aut(Γ).

In this paper we compute the cohomology groups of OWh(Γ), the quotient of
Wh(Γ) in the outer-automorphism group, with field coefficients. Our approach is
to analyze the equivariant spectral sequence associated to the action of OWh(Γ)
on a contractible, simplicial complex introduced by McCullough and Miller [10].
Throughout the paper, cohomology groups will be assumed to have field coefficients
unless otherwise indicated, and (Γ)n denotes the n-fold product Γ × · · · × Γ︸ ︷︷ ︸

n copies

.

Main Theorem. Let Γ = G1 ∗G2 ∗ · · · ∗Gn where each Gi is of type FP∞. Then
the ith cohomology group of OWh(Γ), with field coefficients, is

H i(OWh(Γ)) ' H i((Γ)n−2).

The Main Theorem states an additive isomorphism between the cohomology
groups of OWh(Γ) with the cohomology groups of a direct product of an appropri-
ate number of copies of Γ. We extend this result to the case where the factor groups
are abelian in §5 and we then compute the ring structure of Wh(Wn), where

Wn = Z2 ∗ Z2 ∗ · · · ∗ Z2︸ ︷︷ ︸
n copies

is a free Coxeter group, in §6. The cohomology algebra of Wh(Wn), over the field
with two elements, is generated by n(n−1) one dimensional classes, α∗

ij , 1 ≤ i, j ≤ n
and i 6= j, subject to the relations:

1. α∗
ijα

∗
ji = 0;
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2. (α∗
kj)

n(α∗
ji)

m =
(
(α∗

kj)
n − (α∗

ij)
n
)

(α∗
ki)

m for all m, n.

As a consequence we establish, in Theorem 6.3, that while there is an additive
isomorphism, there is no ring-isomorphism between the cohomology of Wh(Wn)
and the cohomology of (Wn)n−1.

Our argument builds directly from previous arguments, namely the computation
of the Euler characteristic of Wh(Γ) given in [7], a cohomology ring calculation
in [3], and the analysis of a spectral sequence given in [6]. In fact, our main
results are analogs of the results in [6]. The reader unfamiliar with these papers
is strongly encouraged to read them first. We have restricted ourselves to field
coefficients (usually suppressed in the notation) as a matter of convenience, since
our computations involve the cohomology groups of direct products. We know of
no evidence that suggests the isomorphisms do not hold more generally.

Acknowledgments. We thank the organizers of the Geometric Group Theory
program at MSRI in the Fall of 2007: Mladen Bestvina, Jon McCammond, Michah
Sageev, and Karen Vogtmann. The time, space and energy provided by the con-
centration of colleagues in the field gave us the ability to finish this work. We
also thank Fred Cohen for his comments on an early draft of this paper and the
anonymous referee for his or her very helpful comments.

2. The McCullough-Miller Complex

Underlying this work is the action of OWh(Γ) on a contractible complex con-
structed by McCullough and Miller in [10]. In this section we remind the reader of
this action; the reader interested in the details of this action may wish to consult
earlier papers, such as [8], where this material is developed in greater detail.

Given Γ = G1∗G2∗· · ·∗Gn there is an associated contractible simplicial complex
MM on which OWh(Γ) acts cocompactly. The complex MM is the geometric
realization of a poset whose elements consist of certain actions of Γ on trees. Any
such action can be described by its fundamental domain, hence vertices in MM
can be thought of as being associated to certain finite trees, labeled by the various
isotropy groups, modulo an equivalence relation coming from the choices involved
in picking a fundamental domain for an action.

Our computation only uses the fundamental domain for the action of OWh(Γ)
on MM. This fundamental domain has been described as the geometric realization
of a certain poset of trees (referred to as the Whitehead poset in [10]) and as the
geometric realization of a poset of hypertrees (see [8]). Here we use the McCullough-
Miller description of this fundamental domain.

Definition 2.1. An [n]-tree is a bipartite tree where:
1. One set of vertices is labeled by [n] = {1, . . . , n};
2. The other set of vertices is unlabeled; and
3. All leaves are labeled.

We say that T < T ′ if T can be created from T ′ by folding T ′ at labeled
vertices. For example, the leftmost tree in Figure 1 is formed from the center one
by folding over the vertex labeled 4 and identifying the two edges incident to 4 and
their adjacent unlabeled vertices. In a similar way, the center tree comes from the
rightmost one by folding together the two edges to the right of the vertex labeled
4.
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Figure 1. Three examples of [4]-trees, with the indicated partial order.

Following [8] we denote the poset of [n]-trees partially ordered by folding by HTn.
Figure 1 shows a maximal chain of three [4]-trees in HT4. This chain corresponds
to a 2-simplex in the geometric realization.

Proposition 2.2. The fundamental domain for OWh(Γ) y MM is the geometric
realization of HTn. It is a strong fundamental domain, meaning the fundamental
domain is isomorphic to the quotient OWh(Γ)\MM.

The stabilizers of simplices in the fundamental domain HTn are easy to describe.

Proposition 2.3 (Proposition 5.1 in [10]). Let T be an [n]-tree. Denote the degree
of the vertex labeled i in T by δi. Then the stabilizer of T ∈ HTn under the action
of OWh(Γ) is

Stab(T ) = Gδ1−1
1 × · · · × Gδn−1

n .

Further, if T0 < · · · < Tk is a chain in HTn, then the stabilizer of the associated
k-simplex in MM is Stab(T0).

For example, the stabilizers corresponding to the elements of MM indicated in
Figure 1 are: trivial, G4, and G4 × G4, respectively.

Remark 1. The rank of an [n]-tree T is defined to be one less than the number
of unlabeled vertices of the tree. (Going left to right in Figure 1, the [4]-trees
have rank 0, 1, and 2.) It is not hard to show that the number of factors in the
description of the stabilizer of T , r =

∑n
i=1(δi − 1), is the rank of the hypertree.

This follows from Euler’s formula for a tree, (# of vertices) − (# of edges) = 1,
using the [n]-tree’s description as a bipartite graph.

Example 2.4. The poset HT3 is particularly simple. There are only four distinct
[3]-trees and the geometric realization of HT3 is a finite tree (shown in Figure 2).
Using Proposition 2.3 we see that the stabilizer of the central vertex under the
action of OWh(G1 ∗ G2 ∗ G3) is trivial; the stabilizers of the other three vertices
are G1, G2 and G3. Since the associated complex MM is contractible, it must be
a tree composed of copies of the tripod |HT3|. In MM, all vertices corresponding
to rank 0 trees are trivalent, while the vertices corresponding to rank 1 trees have
degree equal to the order of the group Gi, depending on the labeling. As was
noted in [10], this shows that OWh(G1 ∗ G2 ∗ G3) ' G1 ∗ G2 ∗ G3. It follows that
Wh(G1 ∗ G2 ∗ G3) is a ‘(G1 ∗ G2 ∗ G3)–by–(G1 ∗G2 ∗ G3)’ group.

The situation for n > 3 is considerably more complicated. A picture of the
fundamental domain for OWh(Γ) y MM when n = 4 (HT4) can be found in [6]
and [10].
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Figure 2. The geometric realization of HT3 is the fundamental
domain for the action of OWh(G1 ∗ G2 ∗ G3) on MM is a tripod.

In previous papers ([6], [7], and [8] for example) switching from [n]-trees, as
described above, to hypertrees made certain combinatorial arguments easier. As
we only use the conclusions of these arguments, we do not make this switch in
terminology in this paper.

3. The Equivariant Spectral Sequence

Given an action of a group G on a contractible simplicial complex ∆, there is an
associated spectral sequence, usually called the equivariant spectral sequence. The
E1 page of this spectral sequence is given by

Epq
1 =

∏

σ∈∆p

Hq(Stab(σ), K) ⇒ Hp+q(G, K)

where ∆p denotes the set of p-simplices in a chosen fundamental domain for G y ∆.
The d1 differential in this spectral sequence is a combination of coboundary maps
and restriction maps to subgroups, which in this case are direct summands as the
stabilizer groups are direct products. (See §VII.7 and §VII.8 of [2].) In our setting,
p-simplices in the fundamental domain |HTn| are associated to (p+1)-chains of [n]-
trees. The stabilizer of a simplex in |HTn| is the stabilizer of the smallest element
in the chain (Proposition 2.3). Hence the first page of this spectral sequence is
relatively easy to construct for very small values of n. An example is shown in
Figure 3.

The equivariant spectral sequence for OWh(Fn) y MM, where Fn is the free
group on n generators, was analyzed in [6] to determine the integral cohomology
H∗(OWh(Fn), Z). Since our argument builds in a significant way on that calcula-
tion, we summarize it in the next few paragraphs.

When Γ = Fn, then Gi ' Z for all i and simplex stabilizers are free abelian
groups of rank less than or equal to n− 2 by Proposition 2.3 and Remark 1. From
the facts that the complex |HTn| has geometric dimension n − 2 and Zn−2 has
cohomological dimension n− 2, it follows that the E1 page of the spectral sequence
for H∗(OWh(Fn), Z) is trivial outside of [0, n − 2] × [0, n − 2]. In particular, it
follows immediately that H∗(OWh(Fn), Z) has finite cohomological dimension.
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Figure 3. The E1 page of the equivariant spectral sequence for
the action OWh(G1 ∗ · · · ∗ G4) y MM4. Except in the bottom
row, the field coefficients have been suppressed. See [6] and [10]
for an explicit description of the stabilizers.

The number of simplices in |HTn| grows super-exponentially as n increases, a
priori making direct calculation of the spectral sequence extremely difficult. It is a
significant result in [6] that one can completely analyze the E1 page regardless. A
careful analysis of HTn and its interaction with the d1 differential shows that the
E1 page splits into a union of two types of chain complexes. One type corresponds
to the augmented chain complex of a contractible subcomplex of |HTn|. This chain
complex has trivial cohomology, and hence does not contribute any classes to the E2

page of the spectral sequence. The second type corresponds to the chain complex of
a contractible subcomplex of |HTn| without augmentation. The cohomology of this
type of complex consists of a single class in dimension 0. Hence, these complexes
contribute a single class to the zero column of the E2 page of spectral sequence.

Therefore, all cohomology classes on the E1 page which survive to the E2 page
are in the zero column. This implies that E2 = E∞ and the spectral sequence
collapses. Furthermore, there is a bijective correspondence between the chain com-
plexes which contribute classes to the E2 page and certain [n]-trees. These trees
are called essential in [6], and each rank q essential tree contributes a Z-summand
in Hq(OWh(Fn), Z). Once the essential trees are enumerated by rank, the additive
cohomology calculation in [6] follows.

The cases we are considering are complicated by the fact that Gi may not be
isomorphic to Gj (hence more care needs to be taken in tracking the individual
Gi’s). Further, the cohomology groups on the first page of the spectral sequence
may be more intricate than the entries that appeared in the free group case. For
example, H∗(Gi) may have non-trivial classes in arbitrarily high dimension, as in
the case where each Gi is finite. Hence, while the equivariant spectral sequences we
are considering are still first quadrant spectral sequences, they may not be bounded.
Nonetheless, the cohomology classes that do survive to E∞ are closely related to
the ones associated to the essential [n]-trees in the calculation of H∗(OWh(Fn), Z).
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The entries in the equivariant spectral sequence are products of cohomology
groups Hk(Gδ1−1

1 ×· · ·×Gδn−1
n ), paired with a simplex σ. The group Gδ1−1

1 ×· · ·×
Gδn−1

n is the stabilizer of σ, and also of the minimal tree T in the chain associated
to σ. As we are using field coefficients, the Künneth formula says every element
of Hk(Gδ1−1

1 × · · · × Gδn−1
n ) can be viewed as a sum of products of cohomology

classes from the various cohomology groups H∗(Gi). That is, every term in a given
entry of the equivariant spectral sequence can be expressed as a sum of monomials:
x =

∑
(×r

i=1xi), where each xi belongs to Hj(Gk) for some k and r is the rank of
T .

Let x = ×r
i=1xi be a monomial class in the E1 page with an associated tree

T and simplex σ in the geometric realization of HTn. Then this entry has an
analogous entry in the spectral sequence associated to H∗(OWh(Fn); Z), where
one focuses on the same tree T and simplex σ, and a monomial class y = ×r

i=1yi,
where each yi is a generator of H1(Z; Z) if xi 6= 1, and is the identity otherwise. It is
noted in [6] that this entry is part of an integral chain complex contained in the E1

page of the spectral sequence, where the d1 differential defines the boundary map.
This chain complex is the either the augmented or unaugmented chain complex
associated to a contractible subcomplex of |HTn|. Thus it either contributes a Z
to the zero column of the E2 page, or it contributes no classes at all to the E2

page. Further, all chain complexes which contribute a Z to the zero column have
a corresponding class y = ×r

i=1yi where each yi 6= 1. We note one main difference
between the chain complex in the spectral sequence in the case of Γ = G1 ∗ · · · ∗Gn

and Fn = Z ∗ · · · ∗ Z: since we have no a priori control over the dimension of the
xi’s, the entry corresponding to x = ×r

i=1xi may occur in a higher row than the
entry corresponding to its analog y = ×r

i=1yi.
The entry we are considering in the spectral sequence, x = ×r

i=1xi, similarly
determines a chain complex associated to the same subcomplex of |HTn|, but with
coefficients in the field K. That is, the chain complex containing x is simply the
tensor product of the integral chain complex for y with K. Thus this complex either
contributes a single K to the zero column of the E2 page, or it does not survive.
We may then use the characterization of which chain complexes contribute to the
E2 page given in [6]:

Definition 3.1. A monomial cohomology class x of H∗(Stab(T ), K) in the zero
column of the spectral sequence is an essential class if

1. T is an essential [n]-tree;
2. the restriction in cohomology of x to each summand of Stab(T ) is non-

trivial.
(The definition of an ‘essential’ [n]-tree is recalled in the next section.)

Theorem 3.2. The spectral sequence for the calculation of H∗(OWh(Γ)) collapses
at the E2 page and consists entirely of classes in the 0 column corresponding to
essential classes.

4. Counting Planted Forests

From the analysis of the spectral sequence in the last section, the determination
of the additive structure of H∗(OWh(Γ)) has been reduced to a combinatorial
argument counting essential classes. These classes are associated to essential n-
trees, whose definition we recall from [6].
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Definition 4.1. An [n]-tree is essential if there is an unlabeled vertex x, adjacent
to the vertex labeled 1, such that:

1. No unlabeled vertex other than x has degree > 2;
2. If x is removed from the tree then the vertices labeled 1 and 2 are in separate

connected components.
For consistency with [6] we refer to the vertex x as the thick vertex.

Our counting can be facilitated by identifying essential [n]-trees with certain
planted forests on [n]. Namely, in Figure 4 we indicate how essential [n]-trees
correspond to essential planted forests on [n], where in order for a forest to be
‘essential’ one needs:

1. The vertex labeled 1 to be a root;
2. The vertex labeled 2 to be in a tree that is not rooted at the vertex labeled

1.
The correspondence is given, in one direction, by rooting an essential tree at its thick
vertex x, removing this root, the edges attached to the root, and then replacing all
barycentrically subdivided edges by undivided edges.

8 6

72

93

5411 4 5

3 9

2 7

6 8

Figure 4. Essential [n]-trees correspond to essential planted forests.

The number of essential forests is known and is given in [6]. However, that
answer is insufficient for our case. For OWh(Fn) the essential classes were in one-
to-one correspondence with the essential forests. In our situation the complicating
factor is that each Gi may have cohomology classes in arbitrarily high dimension.
Thus, given a fixed [n]-tree T and its stabilizer Stab(T ) = Gδ1−1

1 × · · · ×Gδn−1
n , a

cohomology class of the form x = ×r
i=1xi, can potentially appear in any dimension.

(This could not happen in the case considered in [6], since in that paper each
Gi

∼= Z.) Therefore, an essential [n]-tree may have an infinite number of essential
classes associated to it. To surmount this obstacle we stratify the count and only
consider essential forests with a particular degree sequence on the vertices. This
gives us enough differentiation to keep track of cohomology classes in each dimension
on the E∞ page of the spectral sequence discussed in the previous section.

Define the descending degree of a vertex v in an essential forest to be the number
of edges incident to the vertex in the direction away from the root. Therefore, the
descending degree of a vertex is one less than its degree when a vertex is not the
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root and the same as its degree when it is the root. (The descending degree of
the vertices labeled 5 and 9, in the forest in Figure 4, is 2.) Since the vertices are
labeled by [n], there is a finite sequence of descending degrees, {d1, . . . , dn}, where
di is the descending degree of the vertex labeled i.

Given an [n]-tree T , there is a relationship between δi, the degree of the vertex
labeled i in the tree and di, the descending degree of the vertex labeled i in the
associated planted forest. Specifically, since there are edges between the unlabeled
thick vertex and the roots of the associated planted forest, di = δi − 1. Therefore,
the first part of Proposition 2.3 can be restated as saying that if the descending
degree of the vertex labeled i is di, then the stabilizer of the associated essential
[n]-tree is Gd1

1 × · · · × Gdn
n .

The following sequence of lemmas shows that the number of essential planted
forests with descending degree sequence {d1, . . . , dn} is given by the multinomial

coefficient
(

n − 2
d1, . . . , dn

)
. We note that if d1 + . . .+dn + l = n, then the multinomial

coefficient is given by(
n

d1, . . . , dn

)
=

(
n

d1, . . . , dn, l

)
=

n!
d1! · · · dn! l!

.

We use the following result a number of times in the rest of the paper.

Theorem 4.2. (Theorem 5.3.4 in [11]). Let {d1, . . . , dm} be a descending degree
sequence with

∑
di = m − l. Then the number of planted forests on [m] is

(
m − 1
l − 1

)(
m − l

d1, d2, . . . , dm

)
.

Lemma 4.3. There is a
(

d1 + k − 1
d1

)
-to-1 map from planted forests with d1+k−1

components and vertices labeled by {2, . . . , n} to k component planted forests on [n]
where 1 is a root.

64

3

9

5 1

3 5

9

6

8 2

11

7

8

7

11

2

4

10 10

Figure 5. Counting planted forests

Proof. Take a planted forest on {2, 3, . . . , n} with more than d1 components. By
choosing any d1 components to be subtrees for the vertex labeled 1, we get a planted
forest on [n] with d1 − 1 fewer components. (See Figure 5.) �

Lemma 4.4. The number of planted forests on [n] with 1 as a root and given degree
sequence {d1, . . . , dn} is

(
d1 + k − 1

d1

)(
n − 2

d1 + k − 2

)(
n − k − d1

d2, . . . , dn

)
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where k = n −
∑

di is the number of components.

Proof. We first note that the number of components in a planted forest on [n]
with descending degree sequence {d1, . . . , dn} is the Euler characteristic, hence it
is k = n −

∑
di.

Removing the vertex labeled 1 from a forest satisfying the hypotheses of the
lemma results in a forest on {2, 3, . . . , n} with d1 + k − 1 components. Apply
Theorem 4.2 with m = n− 1 and l = d1 + k − 1 to count all forests on {2, 3, . . . , n}
with descending degree sequence {d2, . . . , dn}. Then multiply by the multiplicity
of the map given in Lemma 4.3, and the result follows. �

Lemma 4.5. The number of essential forests on [n] with given descending degree

sequence d is
(

n − 2
d1, . . . , dn

)
.

Proof. Lemma 4.4 says there is a one-to-one correspondence between “planted
forests on [n] with 1 as a root and with descending degree sequence d = {d1, . . . , dn}”
and pairs consisting of a planted forest F on {2, . . . , n} with degree sequence
{d2, . . . , dn} together with a choice of d1 components of F . Of all the possible(

d1 + k − 1
d1

)
ways of grafting the vertex labeled 1 onto F , the fraction

(
d1+k−2

d1

)
(

d1+k−1
d1

) =
k − 1

d1 + k − 1

yields a forest where the vertex labeled by 2 is not in the tree rooted at 1. Thus
by Lemma 4.4 the number of essential forests on [n] with given descending degree
sequence d is given by

k − 1
d1 + k − 1

·
(

d1 + k − 1
d1

)(
n − 2

d1 + k − 2

)(
n − k − d1

d2, . . . , dn

)

=
k − 1

d1 + k − 1
·
(d1 + k − 1)!
d1!(k − 1)!

·
(n − 2)!

(d1 + k − 2)! · (n − k − d1)!
·
(n − k − d1)!

d2! · · · dn!

=
(n − 2)!

d1!d2! · · · dn!(k − 2)!
=

(
n − 2

d1, . . . , dn, k − 2

)
=

(
n − 2

d1, . . . , dn

)
.

�

The proof of our main result is now straightforward.

Main Theorem. Let Γ = G1 ∗G2 ∗ · · · ∗Gn where each Gi is of type FP∞. Then
the ith cohomology group of OWh(Γ), with field coefficients, is

H i(OWh(Γ)) ' H i((Γ)n−2).

Proof. To exhibit the isomorphism we count the number of classes in dimension i
of a particular type from the cohomology of both groups and show that the counts
are equal. We start with H i(OWh(Γ)). Let x be an essential class in dimension
i. From Definition 3.1, the class x is associated to an essential [n]-tree and can
be written as x = ×r

i=1xi where each xi is a non-identity monomial class in some
H∗(Gj). Say that dk of the classes xi come from H∗(Gk), and assume for the
time being that xi 6= xj when i 6= j. In the spectral sequence, the class x will
be paired with each essential forest with descending degree sequence {d1, . . . , dn}.
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Furthermore, for each such essential forest there are exactly d1!d2! . . . dn! classes
isomorphic to x, as the dk different classes from H∗(Gk) can be chosen in dk! ways.
Therefore, by Lemma 4.5 there are

(
n − 2

d1, . . . , dn

)
d1!d2! . . . dn!

essential classes in the spectral sequence isomorphic to x.
On the other hand, this is the same as the number of times a class isomorphic to

x will appear in H i((Γ)n−2). Starting with the product (Γ)n−2, pick d1 copies of Γ
from which to take terms from H∗(G1), d2 of the remaining copies of Γ from which
to take terms from H∗(G2), etc. The total number of ways to pick appropriate
factors from (Γ)n−2 to generate a class isomorphic to x is the multinomial coefficient(

n − 2
d1, . . . , dn

)
. Once the appropriate factors are chosen, the dj classes from H∗(Gj)

can be chosen in dj ! ways, completing the equivalence.
We note that if xi = xj for some i 6= j, then the counting argument goes

through in the same way as above, although the notation gets significantly more
complicated. �

5. A Partial Extension to Wh(Γ)

Once the cohomology groups of OWh(Γ) are known, it is possible to determine
the cohomology groups of Wh(Γ), since the short exact sequence

1 → Γ → Wh(Γ) → OWh(Γ) → 1

has an associated fiber bundle p : BWh(Γ) → BOWh(Γ) with fiber BΓ which
gives a fibration (see Theorems 1.6.11 and 2.4.12 of [1]).

We remind the reader of the Leray-Hirsch Theorem, as presented in [5]:

Theorem 5.1 (Leray-Hirsch Theorem). Let F
ι→ E

ρ→ B be a fiber bundle such
that

1. Hn(F, K) is a finitely generated free K-module for each n, and
2. There exist classes cj ∈ Hkj (E, K) whose restrictions ι∗(cj) form a basis for

H∗(F, K) in each fiber F .
Then the map Φ : H∗(B, K) ⊗ H∗(F, K) → H∗(E, K) given by

∑

i,j

bi ⊗ ι∗(cj) 7→
∑

i,j

ρ∗(bi) ∪ cj

is an isomorphism.

Remark 2. One can show that the second hypothesis of the Leray-Hirsch The-
orem implies that in the Serre spectral sequence associated to the fiber bundle,
F

ι→ E
ρ→ B, the system of local coefficients on B is trivial. This condition,

which usually appears in statements of the Leray-Hirsch Theorem, implies that the
spectral sequence collapses at the E2 page. [9]

The first hypothesis in Theorem in 5.1 comes for free since we are using field
coefficients and we are assuming that each Gi is of type FP∞.

For the second hypothesis, the kernel of the short exact sequence above is a free
product, Γ = G1 ∗G2 ∗ · · · ∗Gn, so to get a basis for H∗(Γ) it suffices to get a basis
for each H∗(Gi). Notice that if each Gi is abelian, then there is a homomorphism
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πi : Wh(Γ) → Gi induced by φ(αgi

j ) = gi, where j is a fixed index different from
i, and φ(αgl

k ) = 1 whenever k 6= j or i 6= l. This can be verified by consulting
a presentation for Wh(Γ) (see [4]). We must assume the Gi are abelian because
αhi

i αgi

j = αgi
hi

j αhi

i , for gi, hi ∈ Gi. (This is Relation V in [4].) Thus, if the map
πi exists, then it must be the case that gh = g for all g, h ∈ Gi, that is, that Gi is
abelian.

Let ιi : Gi → Wh(Γ) denote the map defined by the two injections

Gi ↪→ Γ = G1 ∗ G2 ∗ · · · ∗Gn ↪→ Wh(Γ)

where the second map sends gi to αgi

1 αgi

2 · · · α̂gi

i · · ·αgi
n . The composition πi ◦ ιi

is the identity on Gi which implies that the restriction map on cohomology, ι∗i , is
onto.

Having satisfied the hypotheses, in the case where the Gi are abelian, we may
apply the Leray-Hirsch Theorem to obtain:

Lemma 5.2. Let Γ be a free product of abelian groups and let {cs} be a collection
of classes in H∗(Wh(Γ)) that map via the restriction map isomorphically onto a
basis for H∗(Γ). Then the map

H∗(OWh(Γ)) ⊗ H∗(Γ) → H∗(Wh(Γ))

defined by ∑

j,s

bj ⊗ i∗(cs) 7→
∑

j,s

p∗(bj) ∪ cs

is an isomorphism.

Corollary 5.3. When Γ is a free product of abelian groups, H∗(Wh(Γ)) is addi-
tively isomorphic to H∗((Γ)n−1).

6. The Case of Free Coxeter Groups

In this section we gain a deeper understanding of the ring H∗(Wh(Γ)) by contin-
uing to narrow our focus. Here we compute the ring structure of H∗(Wh(Wn); K),
where Wn, the n-fold free product Z2 ∗Z2 ∗ · · · ∗Z2, is the ‘free Coxeter group’ and
K is a field of characteristic 2 (or simply the field with two elements). The results
in the last section supply us with an additive answer. The ring structure comes
from an adaptation of a result from Brownstein and Lee’s paper [3].

Identify the canonical generators of Wn as x1, x2, . . . , xn. Elementary Whitehead
automorphisms for Wh(Wn) can be written as αij , where

αij(xk) =
{

xk if k 6= i
x

xj

k if k = i.

We note that the automorphisms αij are of order two. We denote classes in coho-
mology dual to these elements by α∗

ij .

Theorem 6.1. (cf. Theorem 2.10 in [3]) Let K be a field of characteristic 2. The
cohomology algebra H∗(Wh(W3), K) is generated by six classes in degree one, α∗

ij ,
1 ≤ i, j ≤ 3 and i 6= j, subject to the relations

1. α∗
ijα

∗
ji = 0;

2. (α∗
kj)

n(α∗
ji)

m =
(
(α∗

kj)
n − (α∗

ij)
n
)

(α∗
ki)

m for all m, n.
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Proof. For a fixed index k, there is a epimorphism Wh(W3) → Wh(W2) given
by sending the elements αik and αki to the identity. This is a split map, which
implies that H∗(Wh(W2), K) is a summand of H∗(Wh(W3), K). Since Wh(W2)
is isomorphic to W2, its cohomology consists of two one-dimensional polynomial
classes with no nontrivial products. Relation 1 follows.

To establish Relation 2, consider the normal subgroup Inn(W3) of inner au-
tomorphisms, generated by α21α31, α12α32, and α13α23. There is a short exact
sequence

1 → Inn(W3) −→ Wh(W3)
φ−→OWh(W3) → 1.

Making arbitrary choices, we consider OWh(W3) to be generated by the images
under φ of α21, α12, and α13; we denote these elements in OWh(W3) by α21, α12,
and α13. This implies that φ sends α31, α32, and α23 to (α21)−1, (α12)−1, and
(α13)−1 respectively. There is an obvious backmap i : OWh(W3) → Wh(W3)
which shows that the short exact sequence is split. In addition, both Inn(W3) and
OWh(W3) are isomorphic to W3. (See the discussion in Example 2.4.)

Consider the copy of W2 in OWh(W3) generated by α21 and α12. From the
first paragraph of this proof we know that the cohomology of this subgroup is a
summand of H∗(Wh(W3)). let Y = 〈α12〉 and Z = 〈α21〉 respectively. Both Y
and Z are isomorphic to Z2, so both H∗(Y ) and H∗(Z) are generated by single
one-dimensional polynomial generators. We denote the cohomology generators by
y and z. Now φ ◦ i is the identity on OWh(W3), so H∗(Y ∗Z) is again a summand
in the cohomology of Wh(W3). Thus, φ∗ is injective and

φ∗(ym) = (α∗
12)m − (α∗

32)m

φ∗(zn) = (α∗
21)

n − (α∗
31)

n.

In addition, as ymzn = 0 in H∗(Y ∗ Z),

((α∗
12)

m − (α∗
32)

m) ((α∗
21)

n − (α∗
31)

n) = 0

also holds in H∗(Wh(W3)). This product can be expanded, and after the relation
α∗

12α
∗
21 = 0 is applied, Relation 2 results. An identical argument for all other pairs

of classes yields the other relations. �

Expanding on the argument for Theorem 6.1, there are surjections Wh(Wn) →
Wh(Wn−1) that result from sending the generators αni and αin to the identity,
and these maps are split. Brownstein and Lee use these surjections to show that
relations similar to those in Theorem 6.1 hold in H∗(Wh(Fn), Z) for arbitrary n,
and the same argument works for H∗(Wh(Wn), K). It remains to show that there
are no other relations.

Theorem 6.2. The cohomology algebra of H∗(Wh(Wn)) is generated by n(n− 1)
one dimensional classes, α∗

ij , 1 ≤ i, j ≤ n and i 6= j, subject to Relations 1 and 2
in Theorem 6.1.

Proof. The argument is a variant of one found in [6]. We compare the cohomology
groups in the algebra defined by the given generators and relations and show that
this count coincides with the additive count from before. We start by characterizing
the cohomology classes in H∗(Wh(Wn)).

Given any monomial in the cohomology generators α∗
ij , the monomial can be

rewritten in such a way that it has no cycling of indices, that is, so it has no term
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of the form

(α∗
ij)

n1(α∗
jk)n2 . . . (α∗

st)
nm−1(α∗

ti)
nm .

To see why, take a monomial consisting of (powers of) m generators with cyclic
indices. Using Relation 2 and an induction argument, the product of powers of the
first m − 1 generators in the monomial can be written as

(
±

∑
(various monomials in the first m − 2 generators)

)
(α∗

it)
some power.

When this expression is multiplied by the final term, (α∗
ti)

nm , the product is 0 by
relation 1.

We can make one more reduction. Take any monomial in the cohomology gen-
erators α∗

ij . By expanding Relation 2 to

(α∗
kj)

n(α∗
ki)

m = (α∗
kj)

n(α∗
ji)

m + (α∗
ij)

n(α∗
ki)

m

we see that we can rewrite the monomial so the first index in the cohomology
generators is not repeated. Another induction argument, using the fact that cyclic
indices can be avoided, shows that any monomial can be written as a sum of terms
such that in each term no first index is repeated.

We now characterize a monomial basis for the cohomology classes in degree n.
Since we can rewrite classes so no two generators have the same first index, mono-
mials consist of a product of up to n distinct generators subject to this condition.
As all α∗ have dimension 1, the sum of the generators’ powers is n. Finally, no
monomial has cyclic indices.

We establish an isomorphism between these generating monomials and certain
forests. For a given monomial, start with labeled vertices [n], and for each generator
αkl draw a directed edge from the vertex labeled l to the vertex labeled k. Since the
first index only occurs at most once in any monomial, the in-degee of each vertex is
at most one. Also, as no monomial contains cyclic indices the resulting graph has
no cycles, although it is possible for some vertices to be incident to no edges. We
note that each tree in the resulting forest has a unique ‘source’ vertex, which we
view as its root. Hence the resulting graph is a planted forest, with edges on each
tree directed away from the root. This process can be reversed.

As in the proof of the Main Theorem we will count certain cohomology classes
in two different ways and show that the counts agree. In particular, we count
monomials whose associated forest has a fixed degree sequence. Take a monomial
that is a product of powers of n − k generators, x = ×(α∗

ij)
pi . We form a degree

sequence associated to x, d = {d1, d2, . . . , dn}, by noting that dj is the number of
generators in the monomial whose second index is j. The sum

∑n
i=1 di = n − k

is the number of distinct α∗’s in the monomial, and by Lemma 4.4, there are k
components in the forest associated to x. Also by Theorem 4.2, there are

(
n − 1
k − 1

)(
n − k

d1, d2, . . . , dn

)

forests with the degree sequence d. Let p1, p2, . . . , pn−k be the powers of the gen-
erators α∗ in the monomial. For this monomial to be in the degree m cohomol-
ogy, we must have

∑n−k
i=1 pi = m. Let fm to be the total number of solutions to

p1 + p2 + · · · + pn−k = m where pj ≥ 0. Then the total number of cohomology
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classes associated to the degree sequence d is
(

n − 1
k − 1

)(
n − k

d1, d2, . . . , dn

)
fm.

We would like to compare this count to the number of analogous classes in
H∗((Wn)n−1). If these counts are equal, the cohomology groups are additively
isomorphic and we have found all of the necessary ring relations. Consider Wn as
the free product G1 ∗ G2 ∗ · · · ∗ Gn, where each Gj is isomorphic to Z2. To make
the appropriate cohomology comparison, we note that as αij is the automorphism
associated to conjugation by xj , we can identify the subgroup 〈αij〉 with Gj , the
jth copy of Z2. Therefore we will count the number of monomials, x = ×(α∗

ij)
pi ,

in dimension m such that dj of the α∗ come from H∗(Gj). (If we wish to make
this comparison more explicit, we can refer to the copies of Gj in the (n − 1)-fold
product of Wn as Gij , for i = 1, 2, . . . , n − 1.) Given a degree sequence d with∑n

i=1 di = n − k, the number of ways to pick dj copies of Gj from (Wn)n−1 for all
j is given by the multinomial coefficient

(
n − 1

d1, d2, . . . , dn, k − 1

)
.

Once the copies of Gj that supply the cohomology generators are chosen, we still
need to determine appropriate values of the powers pi of the generators so that
the resulting monomial is m-dimensional. As in the paragraph above, there are
fm possibilities for each assignment of groups Gj . Therefore, the total num-
ber of cohomology classes in degree m associated to the degree sequence d is(

n − 1
d1, d2, . . . , dn, k − 1

)
fm. However,

(
n − 1

d1, d2, . . . , dn, k − 1

)
=

(n − 1)!
d1!d2! . . . dn!(k − 1)!

=
(n − 1)!

(n − k)!(k − 1)!
(n − k)!

d1!d2! . . . dn!

=
(

n − 1
k − 1

)(
n − k

d1, d2, . . . , dn

)
.

The process can also be reversed, which implies an additive isomorphism between
Hm(Wh(Wn)) and Hm((Wn)n−1) for all m. This means, in turn, that there can
be no additional ring relations beyond those in Relations 1 and 2. �

The additive cohomology isomorphism suggests an obvious question: does the
isomorphism extend to the cup product structure? We have the following answer.

Theorem 6.3. The cohomology rings H∗(Wh(Wn)) and H∗((Wn)n−1) are not
ring-isomorphic.

Proof. We will proceed by contradiction, assuming that a suitable rewriting of the
classes yields the isomorphism. As the surjections Wh(Wn) → Wh(Wn−1) are split
it is sufficient to show that the ring relations do not hold in Wh(W3).

Denote the canonical generators of W3 × W3 by a1, a2, and a3; and b1, b2, and
b3. Let a∗

i and b∗i be the one-dimensional cohomology classes dual to ai and bi.
By way of analyzing the cup product structure of H∗(W3 × W3), let x∗ and y∗ be
arbitrary non-zero classes in H1(W3 × W3). Distinguish classes from distinct free
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group factors by writing x∗ = A1 + B1, and y∗ = A2 + B2, where the Aj are sums
of the a∗

i from the first free factor and the Bj are sums of the b∗i from the second.
We note that

x∗y∗ = (A1 + B1)(A2 + B2) = A1B2 + B1A2.

If this product is zero, then A1B2 + B1A2 = 0, so

A1B2 = −B1A2 = A2B1.

When x∗ 6= y∗, this only happens if either A1 and A2 are both zero (so x∗ = B1 and
y∗ = B2), or if both B1 and B2 are both zero (so x∗ = A1 and y∗ = A2). That is,
if x∗ and y∗ are distinct one-dimensional classes that cup to zero, then they must
be classes associated to the same copy of W3 in W3 × W3.

Recall that H∗(Wh(W3)) is generated by six one-dimensional classes, α∗
ij . From

Relation 1 in Theorem 6.1, we know that α∗
ijα

∗
ji = 0, Thus α∗

21 and α∗
12 must denote

classes from the same copy of W3, and similarly with α∗
13 and α∗

31 as well as α∗
32

and α∗
23. At least two of these pairs of classes must be associated with the same

free group. Without loss of generality, let α∗
12, α∗

21, α∗
13 and α∗

31 be these classes.
Then α∗

21α
∗
31 = 0. However, α∗

21α
∗
31 is a non-zero class in H2(Wh(W3)) which is

impossible. �

Remark 3. The results in this section should generalize to the case where Γ is a
free product of arbitrary (finitely generated) abelian groups.
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